
Standard Undergraduate Course Profile

COURSE NUMBER: Ve280 COURSE TITLE: Programming and Introductory Data Structures

CREDIT: 4 PREREQUISITES:Vg101 or equivalent

TEXTBOOKS/REQUIREDMATERIAL:
“Problem Solving with C++, 8th Edition,” W. Savitch

PREPARED BY:Weikang Qian

LAST UPDATED:May 25, 2012

DATE OFDISCIPLINE GROUPAPPROVAL:

DATE OFUCAPPROVAL:

CATALOG DESCRIPTION (No more than 100 words):
Techniques for algorithm development and effective programming;

Testing and program correctness; Program language syntax and static

and runtime semantics; Procedure abstraction, recursion, and

parameter passing methods; Abstract data type, inheritance, template,

and polymorphism; Structured data types, pointers, arrays, linked

data structures, stacks, and queues.

COURSE TOPICS:
1. Linux basics and compiling program on Linux

2. Review of C++ Basics, such as array, pointer, etc.

3. Procedural abstraction, function call mechanism, and recursion

4. Function pointer

5. Enum

6. Program arguments

7. Testing

8. Debugging

9. IO

10. Exception

11. Abstract data type and class

12. Inheritance and virtual function

13. Interface (i.e., abstract base class)

14. Representation invariant

15. Dynamic memory allocation and dynamic arrays

16. Overloaded constructor, destructor, copy constructor, and overloaded assignment

operator

17. Operator overloading and friend mechanism

18. Linked list (including linked list traversal)

19. Stack and queue

20. Polymorphism, template, and STL

COURSE STRUCTURE and CONTACT HOUR: 48 hours of lecture and 12 hours of demo/discussion

COURSE

OUTCOMES

[Student Outcomes*

in brackets]

for each course

outcome, links to the

Student Outcomes are

identified in brackets.

After completing Ve280, students should be able to:

1. Take a problem and consider various possible approaches for solving it. [2,6]

2. Select an approach—or algorithm—that provides for a simple, clean, well-structured solution. [2]

3. Convert the algorithm into C++ code, using good design and style. [1,2]

4. Develop and debug a program on Linux operating systems. [1,2]

5. Test and debug the program using rigorous techniques. [1,2]

6. Understand the concepts of top-down design, data encapsulation, information hiding, and procedural and data abstraction. [1]

7. Design, implement, and use classes, including constructors, destructors, and operator overloading. [1,2]

8. Implement dynamic data structures for stacks, queues, and lists. [1]

9. Be able to quickly design, implement, test, and debug a large scale project independently (1000+ lines of code). [1,2]

COURSE

OBJECTIVES

[Course Outcomes

in brackets]

for each course

objective, links to the

course outcomes are

identified in brackets.

1. To give an introduction to programming and to provide a foundation on data structures. [1, 6, 7, 8]

2. To provide students with experience on how to design and implement an algorithm to solve a practical problem. [1, 2, 3, 8, 9]

3. To teach students some useful techniques for developing, debugging, and testing programs. [4, 5, 9]



2 / 2

Rev. 1: July 2020

ABET Student Outcomes* —— Apply to Engineering, Math, and Science Courses Only

1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering,

science, and mathematics

2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public

health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

3) an ability to communicate effectively with a range of audiences

4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments,

which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and

inclusive environment, establish goals, plan tasks, and meet objectives

6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering

judgment to draw conclusions

7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

ASSESSMENT

TOOLS

[Course Outcomes

in brackets]

for each assessment

tool, links to the

course outcomes are

identified

Programming Projects [1, 2, 3, 4, 5, 6, 7, 8, 9]

Midterm and Final Exam [1, 2, 3, 5, 6, 7, 8]


