COURSE NUMBER: Vk250		COURSE TITLE: Principles of Engineering Materials
TERMS OFFERED: Spring		PREREQUISITES: Vc210 or equivalent
CREDIT: 4		
TEXTBOOKS/REQUIRED MATERIAL:		PREPARED BY: Qianli Chen
William Callister, Materials Science and Engineering: An Introduction,9th Ed.		DATE OF PREPARATION: December 18, 2018
ISBN: 978-0-470-41997-7		DATE OF UC APPROVAL:
INSTRUCTOR(S): Qianli Chen		SCIENCE/DESIGN: science
CATALOG DESCRIPTION:		COURSE TOPICS:
and electrical) of metals polymers ceramics and electronic materials		2 Diffusion
Correlations of these properties with: (1) their internal structures (atomic.		3. Mechanical properties, strengthening mechanisms
molecular, crystalline, micro-and macro); (2) service conditions (mechanical,		4. Failure of materials and engineering components
thermal, chemical, electrical, magnetic and radiation); and (3) processing.		5. Phase diagrams
		6. Microstructural design of materials
		7. Polymers
		8. Corrosion 9. Electrical magnetic optical properties
		10. Case studies
COURSE STRUCTURE/SCHEDULE: Lecture: three times per week. 90 minutes each		
1 To teach students the elementary relationships between structure properties processing and performance of materials that are		
	essential for understanding the role of materials in the design of engineering systems. [1,2,3,4,5,6,7,8,9,10]	
	2. To introduce students to the various classes of materials (metals, ceramics, polymers, semiconductors, composites) and their	
COURSE	fundamental chemical and structural nature. [1,2,3,4,5,6,7,8,9,10]	
OBJECTIVES	 3. To illustrate application of thermodynamics (through phase diagrams) and kinetics (through diffusion) to the design of materials and their properties. [3,6,7,8] 4. To introduce students to the functional properties of materials and the roles of microstructure defects and environment play in typical 	
[Course Outcomes		
in brackets]	4. To introduce students to the functional properties of engineering applications [1,2,3,4,5,6,7,8,9,10]	materials and the roles of microstructure, defects and environment play in typical
	5. To stimulate student interest in and appreciation of Materials Science and Engineering by critical examination of engineering case	
	studies, such as the materials design of hip prosthese	s, shuttle tiles, bicycles and electronic devices. [1,2,3,4,5,6,7,8,9,10]
COURSE	1. Using concepts of inter-atomic bonding, be able to predict fundamental physical properties (thermal expansion, melting temperature,	
	and modulus) of different classes of materials. [1,2,7	
	2. Given a particular crystal structure, determine the cr	ystallographic directions and planes, and the linear and planar atomic densities.
	desired solute concentration is attained at a prescribe	add, calculate the temperature needed to diffuse B into Si of C into resuch that a
	4. Given data on strength versus cold work for an alloy, calculate the final diameter of a drawn rod that will have a prescribed cold-worked strength. [1,2,7]	
	5. Given data on fracture toughness, mechanical strength and loading configuration of a material component, calculate the maximum	
OUTCOMES	 tolerable flaw size within a practical safety factor. [1,2,7] COMES 6. Given a binary phase diagram and a particular alloy composition at a given temperature, determine the phases expected to be present, and calculate their compositions and the volume fraction of each phase. [7] 	
[Student Outcomes		
in brackets]	 Given a binary eutectic phase diagram, determine the microstructures expected for various alloy compositions cooled from the melt at different cooling rates. [7] 	
	8. Using the concept of a TTT diagram, determine the heat treatment of a eutectoid steel required to produce a specified strength, hardness and ductility [1,2]	
	9. Given experimental data of the temperature dependence of the electrical conductivity of an extrinsic semiconductor, determine the	
	position of the acceptor or donor levels and the band gap. [7]	
	10. Given the structure and chemistry of a piezelectric ceramic, calculate the strain required to generate a desired voltage for a particular application [1, 2, 7]	
ASSESSMENT	In-class quizzes [1,2,3,4,5,6,7,8,9,10]	
TOOLS	Homework [1,2,3,4,5,6,7,8,9,10]	
in brackets	Midterm Exam [1,2,3,4,5]	
III DI aCKEUS]	Final Exam [6, /,8, 9,10]	