

# **Ve216 Introduction to Signals and Systems**

## 2017 Summer

# 4 Credits

# **Course Objectives**

This course covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.

### **<u>Course Pre/Co-requisites</u>**

Ve 215 Introduction to Circuits and preceded or accompanied by Vv 256 Applied Calculus IV or Vv 286 Honors Mathematics IV.

#### **Textbooks**

Oppenheim, Alan, and Alan Willsky. Signals and Systems. 2nd ed. Prentice Hall, 1996. ISBN: 9780138147570.

# **Instructor**

Dr. Chong Han, Assistant Professor Email: chong.han@sjtu.edu.cn Tel: +86-21-3420-7213 Room 205, University of Michigan-Shanghai Jiao Tong University Joint Institute

#### **Lecture Time and Location**

16:00 - 17:40, Monday, Wednesday, and Thursday. East-Middle Building 1-100 (M/Th), East-Middle Building -300 (W)

#### **Office Hours**

18:30 – 20:30, Wednesday, or upon appointments, Room 205, JI building.



# **Grading**

| Activity                       | Percentage | Date                      |  |
|--------------------------------|------------|---------------------------|--|
| Evom 1                         | 209/       | June 15, Thursday         |  |
|                                | 20%        | June 19, Monday           |  |
| Exam 2                         | 20%        | July 20, Thursday         |  |
| Final Exam                     | 30%        | Final Week                |  |
| Lab                            | 15%        | Weeks 7, 8, 9 (see below) |  |
| Homework, Participation, Other | 150/       | Every Week                |  |
| Factors                        | 1370       | Every week                |  |

Requests for re-grades of exams must be submitted in writing within one week of exam return. All questions may be re-graded.

#### Lab Arrangement

| Section | Week 7           | Week 8           | Week 9           | Lab Location                           |
|---------|------------------|------------------|------------------|----------------------------------------|
| 1       | 18:20-21:00 (TU) | 18:20-21:00 (TU) | 18:20-21:00 (TU) | JI<br>Circuits/Electronics<br>Lab (4F) |
| 2       | 12:10-14:45 (F)  | 12:10-14:45 (F)  | 12:10-14:45 (F)  | JI<br>Circuits/Electronics<br>Lab (4F) |

# **Teaching Assistant**

- Yipai Du, <u>duyipai@sjtu.edu.cn</u>
- Xiaoyu Fang, <u>happyvickyfxy@sjtu.edu.cn</u>
- Xinyue Zhu, <u>crystal\_zxy@sjtu.edu.cn</u>

Office Hours:

- Du: Thur. 18:20-20:00, Fang: Tues. 16:00-17:40, Zhu: Wed. 14:00-16:00
- Location: E-Reading Room (JI 228)

# **Honor Policies**

All students in the class are presumed to be decent and honorable, and all students in the class are bound by the Honor Code of the UM-SJTU Joint Institute (visit http://umji.sjtu.edu.cn/honorcode for more details). You may not seek to gain an unfair advantage over your fellow students; you may not consult, look at, or possess the unpublished work of another without their permission; and you must appropriately acknowledge your use of another's work. Following are specific policies for different types of course assignments:



**Individual Assignments:** You may discuss individual assignments with your fellow students at the conceptual level, but must complete all calculations and write-up, from scratch to final form, on your own. Verbatim copying of another student's work is forbidden. You may not consult homework solutions from a previous term unless they are made available in a publicly accessible form (no unfair advantage can be sought).

**Labs:** ABSOLUTELY NO LATE LAB REPORTS WILL BE ACCEPTED. The labs will help you develop engineering skills. Unexcused absence will result in a grade of zero. Students have the responsibility of contacting the instructor or teaching assistant to make up the missed lab.

**Exams**. Each student must complete the exam solely by her or his own efforts. Questions can be asked only of the course instructors. The exam must be completed within the specified time.

Any violation of the above honor policies appropriate to each piece of course work will be reported to the Honor Council, and if guilt is established penalties may be imposed. Such penalties can include, but are not limited to, letter grade deductions, disciplinary sanctions, or expulsion from the Institute and the University. If you have any questions about this course policy, please consult the course instructors.

|  | Week<br>Index | Lecture                                           | Activity     |
|--|---------------|---------------------------------------------------|--------------|
|  | 1             | Signals and Systems                               | HW1          |
|  |               | Discrete-Time Systems                             | 11 VV 1      |
|  | 2             | Feedback, Poles, and Fundamental Modes            | HW/2         |
|  |               | Continuous-Time Systems                           | П W 2        |
|  | 3             | Z Transform                                       |              |
|  |               | Laplace Transform                                 | HW3          |
|  | 4             | Discrete Approximation of Continuous-Time Systems | TIW/A        |
|  |               | Convolution                                       | HW4          |
|  | 5             | Frequency Response                                | HW5;         |
|  |               | Feedback and Control                              | Exam 1       |
|  |               | Continuous-Time Frequency Response and Bode Plots |              |
|  | 6             | Continuous-Time Feedback and Control, Part 1      | HW6          |
|  |               | Lab Introduction                                  |              |
|  | 7             | Continuous-Time Feedback and Control, Part 2      |              |
|  |               | Fourier Representations                           | п w /, Lao 1 |
|  | 8             | Fourier Series                                    | HWV9. Lab 2  |
|  |               | Fourier Transform                                 | п w o, Lao 2 |
|  | 9             | Discrete-Time Frequency Representations           | HW9; Lab 3   |

# List of Lecture Topics (subject to adjustment)



|    | Discrete-Time Fourier Representations          |                           |  |
|----|------------------------------------------------|---------------------------|--|
| 10 | <b>Relations Among Fourier Representations</b> | HW10; <mark>Exam 2</mark> |  |
|    | Applications of Fourier Transforms             |                           |  |
| 11 | Sampling                                       | HW11                      |  |
|    | Sampling and Quantization                      |                           |  |
| 10 | Modulation, Part 1                             | HW12                      |  |
| 12 | Modulation, Part 2                             |                           |  |
| 13 | Selected Topic                                 | Final Exam                |  |

