Introduction to Computer and Programming

Manuel

Summer 2017

mailto:charlem@sjtu.edu.cn

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

el el el
O khwDd 2o v

OOl SO Ol BECURIVEE O

Table of contents
Course information
Computers and Programming Languages
Introduction to MATLAB
Control statements
Functions and recursion
Plotting in MATLAB
Data types and structures
Introduction to C
Data types in C
Syntax and control statements
Arrays and pointers
Algorithm and efficiency
Introduction to C++
Object and class
Inheritance and polymorphism
Libraries and templates
Beyond MATLAB, C, and C++

Chapter 0

Course information

3/435

Outline

@ Logistics

@ Evaluations

® Resources

Who?

Teaching team:

e Instructor: Manuel (charlem@sjtu.edu.cn)

e Teaching assistants:
e Zhengyang (crukedshfeng@sjtu.edu.cn)
e Chenggang (wuchenggang@sjtu.edu.cn)
e Yufan (yufan_sun@163.com)

mailto:charlem@sjtu.edu.cn
mailto:crukedshfeng@sjtu.edu.cn
mailto:wuchenggang@sjtu.edu.cn
mailto:yufan_sun@163.com

Who?
Teaching team:
e Instructor: Manuel (charlem@sjtu.edu.cn)
e Teaching assistants:
e Zhengyang (crukedshfeng@sjtu.edu.cn)

e Chenggang (wuchenggang@sjtu.edu.cn)
e Yufan (yufan_sun@163.com)

Important notes:

e When contacting a TA for an important matter such as
updating a grade cc the message to the instructor

e Add the tag [vgl01] to the email subject
e.g. Subject: [vgl01l] important issue

e Do not send large files (> 2 MB) by email, instead use the
“Large file upload” assignment on Canvas

mailto:charlem@sjtu.edu.cn
mailto:crukedshfeng@sjtu.edu.cn
mailto:wuchenggang@sjtu.edu.cn
mailto:yufan_sun@163.com

When?

Course organisation:
e lectures:
e Tuesday 14:00 — 15:40
e Thursday 14:00 — 15:40
e Thursday 16:00 — 17:40 (odd weeks)
e Lab sessions: TBA
e Recitation classes: TBA
e Office hours: Tuesday 15:40 — 17:40

Appointments outside of the office hours can be taken by email

What?

Main goals of this course:

e Design simple algorithms
e Understand the main concepts of programming

e Implement clearly stated algorithms in MATLAB/C/C++

What?

Main goals of this course:

e Design simple algorithms
e Understand the main concepts of programming

e Implement clearly stated algorithms in MATLAB/C/C++

Ultimate goal: understand programming and be able to quickly
adjust to new languages/libraries

How?

Learning strategy:
e Course side:
@ Getting familiar with programming (MATLAB)
@® Understand deeper concepts (C)

© Bridge the gap between computer and human views (C++)

How?

Learning strategy:
e Course side:
@ Getting familiar with programming (MATLAB)
@® Understand deeper concepts (C)

© Bridge the gap between computer and human views (C++)

e Personal side:

@ Read and write code
@ Relate known strategies to new problems

© Perform extra research

Course outcomes

Detailed goals:

Proficiency with data representation and naming
Proficiency with data input and output

Proficiency with programming with math and logical operators
and functions

Proficiency with designing, testing, and implementing
functions and procedures

Proficiency with control flow using selection and iteration
Proficiency with use of pre-defined data structures
Proficiency with primitive and complex data types
Proficiency with visualization of data

Proficiency with algorithm design for engineering analysis

Outline

@ Logistics

@ Evaluations

® Resources

Assignments and labs

Assignments:
e Total: 8

e Content: basic algorithms, Matlab, C, C++

Labs:
e Total: 8

e Content: simple practice sessions in Matlab, C, and C++

Grading policy

Grade weighting:
e Assignments: 35% e Two midterm exams: 15% each

e Labs: 15% e Final exam: 20%

Grading policy

Grade weighting:
e Assignments: 35% e Two midterm exams: 15% each

e Labs: 15% e Final exam: 20%

Late submission: -10% per day, not accepted after 3 days

Final letter garde: a curve will be applied to balance the three
sections

Honor Code

General rules:
e Not allowed:
e Reuse the code/work from other students
e Reuse the code/work from the internet

e Give too many details on how to solve an exercise

Honor Code

General rules:
e Not allowed:
e Reuse the code/work from other students
e Reuse the code/work from the internet

e Give too many details on how to solve an exercise

o Allowed:

e Reuse part of the code/work from the course/textbooks under
the condition of quoting its origin

e Share ideas and understandings on the course

e Give hints (not solutions)

Honor Code

Documents allowed during the exams:
e The lecture slides with notes on them (paper or electronic)

e A mono or bilingual dictionary

Group works:

e Every student in a group is responsible for his group
submission

e If a student breaks the Honor Code, the whole group is sent
to Honour Council

Special circumstances

Contact us as early as possible when:

e Facing special circumstances (e.g. full time work, illness. ..

e Feeling late in the course
e Feeling to work hard without any result

Any late request will be rejected

Outline

@ Logistics

@ Evaluations

© Resources

Canvas

On Canvas platform:

e Course materials and assignments
e Announcements and notifications

e Polls

https://sjtu-umich.instructure.com/login

References

Places to find information:

e MATLAB documentation
e C for Engineers and Scientists by Harry H. Cheng
e Thinking in C++ by Bruce Eckel

e Search the web

References

Places to find information:

o MATLAB documentation

C for Engineers and Scientists by Harry H. Cheng

Thinking in C++ by Bruce Eckel

Search the web

Do not use baidu

Key points

Work regularly, do not wait the last minute/day
Respect the Honor Code

Go beyond what is taught

Do not learn, understand

Keep in touch with us

Any advice/suggestions will be much appreciated

«~ 7T

Chapter 1

Computers and Programming Languages

zzzzz

Outline

@ A brief history of computing

@ Understanding Computers

© Understanding Programming

22/435

Calculating Tools

SET OF RODS

Napier's bones (1617) Sliderule (1620)

Calculating Tools

SET OF RODS

Napier's bones (1617) Sliderule (1620)

Note: first pocket calculator around 1970 in Japan.

24/435

The 19th Century

gﬁ, Charles Babbage (1791-1871)
A

Lo e Difference Engine (Built in the 1990es)

e Analytical Engine (Never built)

Ada Byron (1815-1852)

e Extensive notes on Babbage work

e Algorithm to calculate a sequence of Bernoulli
numbers using the Analytical Engine

Toward Modern Computing

Apple | (1976)

1962: First computer game
1969: ARPAnet
1971: First microprocessor

1975: First consumer
computers

1981: First PC, MS-DOS

1983: First home computer
with a GUI

1985: Microsoft Windows
1991: Linux

Outline

@ A brief history of computing

@ Understanding Computers

© Understanding Programming

Von Neumann architecture

Control Unit

Arithmetic/Logic Unit

What does a computer understand?

e Humans use decimal (0,1,2,3,4,5,6,7,8,9)
e.g. (253)10

What does a computer understand?
e Humans use decimal (0,1,2,3,4,5,6,7,8,9)
e.g. (253)10

e Computers work internally using binary (0,1)
e.g. (11111101),

What does a computer understand?

e Humans use decimal (0,1,2,3,4,5,6,7,8,9)
e.g. (253)10

e Computers work internally using binary (0,1)
e.g. (11111101),

e Human-friendly way to represent binary: hexadecimal
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
CRO (FD)16

Number base conversion

e From base b into decimal: evaluate the polynomial
(11111101); =1-274+1.2641.2541.24+1.23+1.224+0-21 +1.20 = 253

(FD)is = F - 16" + D - 16° = 15- 16! + 13- 16° = 253

e From decimal into base b: repeatedly divide n by b until the
quotient is 0. The remainders are the numbers from right to

left
rem(253,2)=1, rem(126,2)=0, rem(63,2)=1, rem(31,2)=1, rem(15,2)=1,
rem(7,2)=1, rem(3,2)=1, rem(1,2)=1

rem(253,16)=13=D, rem(15,16)=15=F

e From base b into base b?: group numbers into chunks of a
elements
(11111101), = 1111 1101 = (FD)16

Quick examples

Exercise.
e Convert into hexadecimal: 1675, 321, (100011), 10111011),
e Convert into binary: 654, 2049, ACE, 5F3EC6
e Convert into decimal: (111110), (10101),, (12345)16, 12C3C

Quick examples

Exercise.
e Convert into hexadecimal: 1675, 321, (100011),, 10111011),
e Convert into binary: 654, 2049, ACE, 5F3EC6
e Convert into decimal: (111110), (10101),, (12345)16, 12C3C

Solution.

1675 = 68B, 321 = (141)16, (100011), = (23)36,

654 = (1010001110),, 2049 = (100000000001),,

ACE = 101011001110, 5F3EC6 = (10111110011111011000110);
(111110); = 62, (10101), = 21, (12345)16 = 74565,

12C3C = 76860

How to use a computer?

Problem
EEREYZE

Algorlthm

Computer level

Machine code

k—) Solution

Outline

@ A brief history of computing

@ Understanding Computers

© Understanding Programming

Algorithm

Algorithm: recipe telling the computer how to solve a problem.

Algorithm

Algorithm: recipe telling the computer how to solve a problem.

Example.
| am the “computer”, detail an algorithm such that | can prepare a
jam sandwich.

Actions: cut, listen, spread, sleep, read, take, eat, dip, assemble
Things: knife, guitar, bread, honey, jamjar, sword, slice

Algorithm
Algorithm: recipe telling the computer how to solve a problem.
Example.

| am the “computer”, detail an algorithm such that | can prepare a
jam sandwich.

Actions: cut, listen, spread, sleep, read, take, eat, dip, assemble
Things: knife, guitar, bread, honey, jamjar, sword, slice

Algorithm. (Sandwich making)

Input : 1 bread, 1 jamjar, 1 knife
Output: 1 jam sandwich
1 take the knife and cut 2 slices of bread;
2 dip the knife into the jamjar;
3 spread the jam on the bread, using the knife;
4 assemble the 2 slices together, jam on the inside;

Program

Algorithm vs Machine code

Algorithm —— > Programming Language

Machine Code +———— Interpreter / Compiler

Example
Problem: given a square and the length of one side, what is its area?

Algorithm.

Input : side (the length of one side of a square)
Output : the area of the square
1 return side x* side

area.c area.cpp area.m

#include <stdio.h>
int main() {
int side;
printf("Side: ");
scanf ("%d",&side);
printf ("Area: Jd",
sidexside);

#include <iostream> 1 a=input("Side: ");
using namespace std; 2 printf ("Area: /d",..
int main() { 3 axa)
int side;

cout << "Side: ";

cin >> side;

cout << "Area: "\

<< sidexside;
return O;

1
2
3
4
5
6
7
8

© XN OO R W N =

=
(=}

Running the program

e Cor C++
@ Write the source code

@® Compile the program
© Run the program

e MATLAB
@ Type the code

@® Press Return

Key points

What is a programming language?
What are the two main types of programming languages?
What is an algorithm?

How easy is it to write machine code?

«~ 1

Chapter 2

Introduction to MATLAB

4444444

Outline

@ Programming in sciences

@ Running MATLAB

© Arrays and matrices

Axiom
GAP
gp
Magma
Maple

Mathematica

Mathematical softwares

MATLAB

e Maxima

Octave

o R

Scilab

MATLAB=MATrix LABoratory

Matrix manipulations
Implement algorithms
Plotting functions/data
Create user interfaces

Interfaced with other
programming languages

MATLAB

Easy to use

Versatile

Built-in programming languages
Many toolboxes

Widely used in academia and
industry

Why MATLAB?

MRI slices

HDO @
DO @
DD @
D@
DHND@® @
DWo@®®

Stereo Vision

47/435

Mathematics and Physics

Physical problem ——— Mathematical problem

Physical solution ¢<———— Mathematical solution

What to do?

Clearly state/translate the problem

What is known — INPUT

What is to be found — OUTPUT

Find a systematic way to solve the problem — Algorithm
Check the solution

Start implementing

Example

Given that the sun is located 1.496 - 108 km away from the Earth
and has a circumference of 4.379 - 10° km, calculate its density.

Studying the problem

Problem: Given that the sun is located 1.496 - 102 km away from the
Earth and has a circumference of 4.379 - 10% km, calculate its density.

e Easy part
e Problem: finding the density of the sun
e Initial input: distance r, circumference c

e Output: density d

Studying the problem

Problem: Given that the sun is located 1.496 - 102 km away from the
Earth and has a circumference of 4.379 - 10% km, calculate its density.

e Easy part

e Problem: finding the density of the sun
e Initial input: distance r, circumference c

e Output: density d

e Potentially more complicated part
@ Density

circumference

- = volume V
T

@® Sun ~ sphere, radius =

© Mass of the sun:

Studying the problem

Problem: Given that the sun is located 1.496 - 102 km away from the
Earth and has a circumference of 4.379 - 10% km, calculate its density.

e Easy part

e Problem: finding the density of the sun
e Initial input: distance r, circumference c

e Output: density d

e Potentially more complicated part

@ Density
@ Sun ~ sphere, radius = Sreumference . yolyme V/
2 2
© Mass of the sun: Kepler's 3rd law: % = ﬁ;i/v/
. 423
O M="TCx

The Algorithm

Problem: Given that the sun is located 1.496 - 102 km away from the
Earth and has a circumference of 4.379 - 10 km, calculate its density.

Algorithm.

Input :r=1496-10% c=4.379-10° G =6.674-10"%, T = 365D
Output : Density of the Sun
1V« %ﬂz(giﬂf;
2 M« 24,
M

3 return v

The Algorithm

Problem: Given that the sun is located 1.496 - 102 km away from the
Earth and has a circumference of 4.379 - 10 km, calculate its density.

Algorithm.

Input :r=1496-10% c=4.379-10° G =6.674-10"%, T = 365D
Output : Density of the Sun

1V $n(=)3%

472

2 Meﬁ,
M

3 return v

Run the algorithm: 338110866080

WRONG!

UNITS!

The Algorithm

Problem: Given that the sun is located 1.496 - 10% km away from the
Earth and has a circumference of 4.379 - 10° km, calculate its density.

Algorithm.

Input :r=1496-10" m, c =4.379-10° m,
G =6.674- 1071 m3/kg/s?, T = 365 * 24 x 3600 s
Output : Density of the Sun

4 c \3.
1 Ve 3n(55)%
472
GT2 !
M.
Vv

2 M+
3 return

Run the algorithm: 1404 kg/m?3

Outline

@ Programming in sciences

@ Running MATLAB

© Arrays and matrices

Starting MATLAB

Two modes: desktop vs no desktop

In desktop mode:

e Command history
o Workspace

e Command window

Files to run must be in current directory or in a directory
listed in the path

e Help

142 vs. 142;

Variables: start with a letter, case sensitive.

e.g. a=1+42; A=3+42; al23_=4+5;
% to add comments
, to separate commands

. to split a statement over 2 lines

namelengthmax, iskeyword

Basic use

Inf = Infinity
NaN: Not a Number

Simple operations

pi =
= V=1

— T
Inf = Infinity

NaN: Not a Number

Simple operations

Addition: +

Subtraction: —

Multiplication: *
e Power: ~

(Right) division: /

Left division: \

Order of evaluation: ()

More advanced operations

Large number of functions to solve mathematical problems:

e Elementary function: help elfun
e Special functions: help specfun

e Matrix functions: help elmat

r=1.496%10"11; ¢=4.379%1079; G=6.674*10"-11;
T=365%24+3600;

V=4*pi/3*(c/(2*pi))~3;
M=4*pi~2*r~3/(G*T"2);
M/V

62/435

M-File

MATLAB code can be written is a file and then loaded
All variables are added to the workspace

To avoid variable conflicts make use of the functions:

clear, clear all, clc

Add cell breaks to debug the code

A first simple program

Exercise.
Prompt the user for two numbers, store their sum in a variable,
and display the result.

clear all, clc;
numberl=input ('Input a number: ');

number2=input (' Input a number: ');
numbers=numberl-+number?2;
disp(numbers) ;

64/435

Outline

@ Programming in sciences

@ Running MATLAB

© Arrays and matrices

Arrays and MATLAB

Array: arrangement of quantities in rows and columns

Arrays and MATLAB

Array: arrangement of quantities in rows and columns

l

Matrix: two-dimensional numeric array

Arrays and MATLAB

Array: arrangement of quantities in rows and columns

l

Matrix: two-dimensional numeric array

l

MATLAB: MATrix LABoratory

Arrays and MATLAB

Array: arrangement of quantities in rows and columns

l

Matrix: two-dimensional numeric array

l

MATLAB: MATrix LABoratory

|

Arrays are the most important concept to understand

Generating arrays and matrices

e Generate a sequence of numbers: a:b or a:b:c

e Concatenate (join) elements: []

Generating arrays and matrices

Generate a sequence of numbers: a:b or a:b:c
Concatenate (join) elements: []
Generate a 1-dimensional array: [a:b] or [a:b:c]

Generate a 2-dimensional array: [a b c; d e f;]

Generating arrays and matrices

Generate a sequence of numbers: a:b or a:b:c
Concatenate (join) elements: []

Generate a 1-dimensional array: [a:b] or [a:b:c]
Generate a 2-dimensional array: [a b c; d e f;]

Generate a list between a and b, with n elements:
linspace(a, b, n)

zeros(a,b)

ones(a,b)

clear all
a=magic(5)
a=[a;a+2], pause
a(:,3)=[1]
a(:,3)=5

a(7,3), pause
whos a
a=reshape(a,5,8)
a', pause

sum(a)
sum(a(:,1))
sum(a(1l,:))

Arrays

Element by element

K

./
a\

Array vs Matrix

Matrices

Complex conjugate transpose: ’
Nonconjugate transpose: *

det

inv

eig

A(C:,[1 4]), pause
AC[2 31,[3 11), pause
reshape(A,2,6), pause
A(:), pause
flipud(A), pause
fliplr(A), pause

[A AC:,end)], pause
A(1:3,:), pause

[A; A(1:2,:)], pause
sum(A) ,pause

sum(A'), pause
sum(A,2), pause

[LA ; sum(A) 1 [sum(A,2) ; sum(A(:))] 1, pause
A’

1
2
3
4
5
6
7
8
©

=
= o

Accessing elements in a matrix

Given a matrix, elements can be accessed by:
e Coordinates: using their (row,column) position
e Indices: using a single number representing their position; the

top left element has index 1 and the bottom right “number of
elements”

A=magic(5)
A(3,2)

ING))
numel (A)

71/435

Key points

What does MATLAB mean?

How to process a problem before implementing it?
What can be said about units?

How to write simple scripts in MATLAB?

What is the difference between an array and a matrix?

«~ 1

Chapter 3

Control statements

73/435

Outline

@ Conditional expressions

@ Loops

© Advanced usage

if expressionl
statementsl
elseif expression2

statements2
else

statements
end

75/435

< less than

<= less than or equal to

> greater than

>= greater than or equal to
== equal to

~= not equal to

Relational operators

Relational operators

< less than

e <= less than or equal to

e > greater than

e >= greater than or equal to
e == equal to

e ~= not equal to

Returns True or False

Boolean logic
Boolean logic was introduced by George Boole around mid 1800s
Truth table of the common operations:

A|B|AANB|AVB|AsB
o o 0 0

= = O O
_ O
= O O

1 1
1 1
1 0

Boolean logic

Boolean logic was introduced by George Boole around mid 1800s

Truth table of the common operations:

A|B|AANB|AVB|AsB
off o 0 0

= = O O

1 0
0 0
1 1

=

1
1
0

Idea: run instructions depending on the thruth value of a given
expression

Logical operators

& and
| or
~ not

xor(+,-) exclusive or

1 A=[0 1 10 1]; B=[11 0 1 0];

2 A & B, A | B, ~A, xor(A,B)

78/435

1 exist('file') & load('file')

2 exist('file') &% load('file')

79/435

k=input ('Press a key: ','s');
if k>='0' && k<='9'
disp('Digit')

else
disp('Not a digit')
end

80/435

k=input ('Press a key: ','s');
if k>='0' && k<='9'
disp('Digit')

else
disp('Not a digit')
end

80/435

The switch statement

Executes statements depending on the value of a variable, e.g.

When it rains, | take an umbrella; When it's sunny | take a hat.

switch variable
case valuel
statementsl
case value2
statements2
otherwise
statements

end

81/435

i=input ('Input a digit: ');
switch i
case 0
disp('0")

case {1,2,3,4}
disp('<5")
otherwise
disp('>=5")
end

82/435

Outline

@ Conditional expressions

@® Loops

© Advanced usage

What is a loop?

Group of statements repeatedly executed as long as the conditional
expression is True

Three main types of loops in MATLAB:

e while
o for

e Vectorizing loops

1 while expression

2 statements
3 end

85/435

while expression
statements
end

85/435

o=input ('Input a basic arithmetic operation: ','s');
i=1;
while (o(i) >= '0' && o(i) <= '9'")
i=i+1;
end
ni=str2num(o(i:i-1));
n=o0(i);
n2=str2num(o(i+1:end));
switch n
case '+'
nl+n2
case '-
nil-n2
case 'x'
nl*n2
case '/'
ni/n2
otherwise
disp('Not a basic arithmetic operation')
end

1
2
3
4
5
6
7
8
©

Questions

In the previous code:

e What is the user expected to input?
e What is the purpose of the while loop?
e How is switch used?

e What is happening if something else that an integer is input?

1 for i=start:increment:end

2 statements
3 end

88/435

for i=start:increment:end
statements
end

a=[]

for i=0:2:100
a=[a i]

end

88/435

Vectorizing loop

MATLAB: array/matrix language

l

Convert for/while loops into vector/matrix operations

a=zeros(1,100000000); i=1;

tic; while i<=100000000;
a(i)=2x(i-1); i=i+i;

end; toc;

=zeros (1,100000000) ;

tic; for i=1:100000000;
a(i)=2+(i-1);

end; toc;

tic; [0:2:199999999]; toc;

1
2
3
4
5
6
7
8
9

89/435

Outline

@ Conditional expressions

@ Loops

© Advanced usage

The continue and break commands

e continue: skip the remaining statements in the loop to go to the
next iteration

e break: exit the loop and execute the next statements outside the
loop

a={'1','2",'3','4','5','6','7','8','9','0'};
w=input ('Input a word: ','s');
for i=1:length(w);
switch w(i);
case d;
continue;
case ' ';
break;
otherwise
cnt=cnt+1;
end, end, cnt

1
2
3
4
5
6
7
8
9

=
= o

91/435

Efficiency

Internal structure of matrices: linear memory
. 1 2 3
& 1456
Row or column first: 1234560r142536
MATLAB uses the “column-major order”

Column should be in the outer loop

10000; a = zeros(N);
tic;
for j = 1:N
for i=1:N

a(j,i) = 1;
end
end
toc;

93/435

10000; a = zeros(N);
tic;
for j = 1:N
for i=1:N

a(j,i) = 1;
end
end
toc;

93/435

Accessing specific elements in a matrix

Access elements depending on a logical mask:

@ Generate an logical array depending on some condition

® Apply a transformation only on a 1 in the logical array

A=magic(5); B=A >10;A(B)=0
a=input('Vector: ')
b=(mod (a,2)==0) ;

c=a. 2;
c(~b)=a(~b). 3

94/435

Questions

In the previous code:

e What is the result of whos B?

What does B = A > 10 mean?

What is the goal of line 37

After line 4 what is in c?

Why is “b used?

Why are conditional statements useful?
How the check some conditions?

How to loop in MATLAB?

How to exit a loop?

How to choose which type of loop to use?

Key points

«~ 1

Chapter 4

Functions and recursion

97/435

Outline

@ Basics on functions

® Common MATLAB functions

® Recursion

From script to function

Script:
e Sequence of MATLAB statements

e No input/output arguments

e Operates on data on the workspace

From script to function

Script:
e Sequence of MATLAB statements

e No input/output arguments

e Operates on data on the workspace

Function:

e Sequence of MATLAB statements
e Accepts input/output arguments

e Variable are not created on the workspace

Functions in MATLAB

Function saved in a .m file

The .m file must be in the “path”

The function name must be the same as the filename
function [outputl, output2,...] = Functionname(inputl,input2,...)

The function can be called from another .m file or from the
workspace

r=1.496*10"11; c=4.379%1079; G=6.674%10"-11;
=365%24*3600;
V=4*pi/3*(c/(2*pi))~3;

M=4*pi~2*r~3/(G*T"2) ;
M/V

101/435

Example

Script version:

1 r= ~11; c= ~9; G= - ;
2 T= 8

3 V=4xpi/3*(c/(2%pi))~3;

4 M=4+pi~2+r"3/(G+T"2);

5 M/V

Function version:

density.m

function d=density(r,c,T)
G=6.674*10"-11;
V=4xpi/3%(c/(2%pi))~3;

M=4xpi~2%r~3/(G*T"2) ;
d=M/V;

Example

Script version:

1 r= “11; c= ~9; G= - H
2 T= H

3 V=4xpi/3*(c/(2*pi))~3;

4 M=4+pi~2+r"3/(G+T"2);

5 M/V

Function version:

density.m

function d=density(r,c,T)
G=6.674*10"-11;
V=4xpi/3%(c/(2%pi))~3;

M=4xpi~2%r~3/(G*T"2) ;
d=M/V;

The function can be applied to any orbital system; e.g. Jupiter — Europa:
radius: 671034000 m, period: 306720 s, circumference: 439260000 m

Sub-functions
A .m file can contain:
e A “main function”

e Several sub-functions, only visible to other functions in the
same file

Example.
Write a function returning the mean and the standard deviation,
where the mean is calculated in a sub-function

Sub-functions
A .m file can contain:

e A “main function”

e Several sub-functions, only visible to other functions in the
same file

Example.
Write a function returning the mean and the standard deviation,
where the mean is calculated in a sub-function

stat.m

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);

stdev = sqrt(sum((x-mean)."2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

Functions and sub-functions

In the previous example:

e How to save both the variable mean and stdev?
e How many Input have the avg and stat functions?
e |s the function avg accessible from the workspace, why?

e |f mean is changed into m in the first function does it need to
be changed in the second function, why?

Outline

@ Basics on functions

@ Common MATLAB functions

® Recursion

Mathematical functions

Defining a function: £=0(x) x"2-1

Integral: syms z; int(z"2+1), int(z"2+1,0,1)
Differentiation: syms t; diff(sin(t~2))

Limit: 1imit(sin(t)/t,0)

Finding a root of a continuous function: fzero(£,0.5)
Square root: sqrt(9)

Nth root: nthroot (4, 3)

The save and load functions

Saving variables:

save('filename', 'varl','var2',..., 'format')

e List of variables optional

e Common formats: -mat — binary, —ascii — text

Loading variables:

load('filename', 'format')

Random or pseudorandom?

Problem:

e Computer cannot generate random numbers
e No way to generate real random numbers using a software

e Random human input is not random

Random or pseudorandom?

Problem:

e Computer cannot generate random numbers
e No way to generate real random numbers using a software

e Random human input is not random

Partial solution: pseudo random number generator

Generating pseudorandom numbers

rand(n,m): nxm matrix of random numbers, following the
uniform distribution

randn(n,m): nxm matrix of random numbers, following the
standard normal distribution

random('name',parameters): generate random numbers
following the distribution name, parameters may vary
depending on the distribution

rand('state',datenum(clock)): use a specific seed

randperm(n): random permutation

a=pi; b=sprintf('%g',pi)
sprintf ('%d',round(pi))

sprintf('%s','pi")
a=[1 2 3;2 5 6;3 7 8];
text=sprintf('size: %d by %d', size(a))

109/435

File input/output

Basic idea: open a stream between a source and MATLAB
Different ways to access a file:

e Read only (1)

e Write to new file (w)

Append to new/existing file (a)

Read and write (r+)

Read and overwrite (w+)

Read and append (a+)

File input/output

Basic idea: open a stream between a source and MATLAB
Different ways to access a file:

e Read only (1)

e Write to new file (w)

Append to new/existing file (a)
e Read and write (r+)

e Read and overwrite (w+)

e Read and append (a+)

fd=fopen('file.txt', 'permission')
fclose(£d)

The fprintf and fscanf functions

Writing in a file: fprintf (fd, format, variables)
(similar to sprintf)

The fprintf and fscanf functions

Writing in a file: fprintf (fd, format, variables)
(similar to sprintf)

Reading from a file: fscanf (fd, format, size)

Reads a file

Converts into the specified format

Only reads size elements if size is specified

Returns a matrix containing the read elements

Returns an optional parameter: number of elements
successfully read

fgetl(£d): returns one line

Example

Given a text file where each line is composed of three fields,
namely firstname, name and email, write a MATLAB function
generating a text file where (i) the order of the lines is random and
(i) each line is composed of the same fields in the following order:
name, firstname and email

Example

sortnames.m

function sortnames(finput, foutput)

fdi=fopen(finput,'r');

i=1;

line=fgetl(£d1);

while line ~= -1
a=find(isspace(line),2);
info{i}=sprintf('%s %s %s\n', line(a(1)+1:a(2)-1),

line(l:a(1)-1), line(a(2)+1:end));

i=i+1; line=fgetl(£fdl);

end

fclose(fdl);

1
2
3
4
5
6
7
8
9

=
N o~ O

fd2=fopen(foutput, 'v');

for j=randperm(i-1)
fprintf (£d2,info{jl});

end

fclose(£d2);

e e
N O o W

Example

In this simple example:

e How to check the last line was reached, why?
e How to access the different fields?
e How to perform a random permutation?

e Each time a file is opened it must be

Outline

@ Basics on functions

® Common MATLAB functions

© Recursion

116/435

GNU: GNU’s Not Unix

LAME: LAME Ain’'t an MP3
Encoder

WINE: WINE Is Not an
Emulator

PHP: PHP Hypertext
Preprocessor

Recursive acronyms

QX

A short recursive story

A child couldn't sleep, so her mother told her a story about a little
frog, who couldn'’t sleep, so the frog's mother told her a story
about a little bear, who couldn't sleep, so the bear's mother told
her a story about a little weasel. .. who fell asleep. ...and the little
bear fell asleep; .. .and the little frog fell asleep; ...and the child
fell asleep.

Recursion in computer science

Recursion: repeating items in a self-similar way

Given a process and some data, apply the same process using more
simple data in order to describe this initial process and data

Strategy: a function calling itself

S NN =

A short recursive story

For the sake of simplicity we work with integers and map the child
to 3, the frog to 2, the bear to 1, and the weasel to 0.

Algorithm. (Bedtime story)

Input : An integer n representing an animal or a child
Output: The child and all the animals asleep

Function Read(n):

if i = 0 then sleep;

else n< n—1; Read(n);
end

Question: draw a simple diagram showing how the recursion is
applied

Numbers in words

For an automated information service a telephone company needs
the digits of phone numbers to be read digit by digit. Therefore
you are asked to rewrite a sequence of digits into words, with a
space between each word; no space at the beginning and at the

end.

© ® N O A W N =

L i < = =
o O A W N R O
m

Number in words

Input : A large integer n
Output : n, digit by digit, using words

Function PrintDigit(n):
case n do
0: print('zero’); 1: print('one’); 2: print("two’);
3: print('three’); 4: print('four’); 5: print(’five);
6: print('six’); 7: print('seven’); 8: print('eight’);
9: print('nine’); else: error('not a digit’);
end case
end
unction PrintDigits(n):
if n < 10 then
| PrintDigit (n)
else
PrintDigits (n div 10);
print(’ '); PrintDigit (n mod 10)
end if

end

Recursion vs. iteration

When using recursion over iteration:

e Recursive algorithm more obvious than iterative one

e Depends on the language

In MATLAB, C and C++, iterative algorithms should be preferred

Recursion vs. iteration

When using recursion over iteration:

e Recursive algorithm more obvious than iterative one

e Depends on the language

In MATLAB, C and C++, iterative algorithms should be preferred

Danger: memory usage

Key points

Why should functions be preferred over scripts?

How to perform mathematical calculations in MATLAB?
How to save the state of the workspace?

What is recursion?

When to use recursion?

«~ 7T

Chapter 5
Plotting in MATLAB

55555555

Outline

@ 2D plotting

@ 3D plotting

© Curve fitting

General plotting process

@ Use plotting tools or functions to create a graph
@® Extract data info/perform data fitting

© Edit components (axes, labels. . .)

O Add labels, arrow

@ Export, save, print. ..

Main plotting functions

Plot the columns of x, versus their index: plot(x)
Plot the vector x, versus the vector y: plot(x,y)
Plot function between limits fplot (f,1im)

More than one graph on the figure: hold

Plotting properties

Changing the aspect of the figure:

e Axis properties axis
e Line properties: 1linespec

o Marker properties

y=exp(0:0.1:20) ;plot(y);

x=[0:0.1:20] ;y=exp(x) ;plot(x,y);
x=[-4:0.1:4] ;y=exp(-x. 2);plot(x,y,'-or');
hold on;

fplot ('2*exp(-x~2) "', [-4 4]1);

hold off;

f=0(x) sin(1./x)

fplot (£, [0 .51)

hold;

fplot (£, [0 0.5],10000,'--r")

130/435

Polar graph: polar(t,r)

Bar graph: bar(x,y)

Horizontal bar graph: barh(x,y)
Pie chart: pie(x)

More than one plot: subplot (mnp)

More plotting

Outline

@ 2D plotting

@ 3D plotting

© Curve fitting

t=0:.01:2*pi;
x=sin(2.#*t)+1;

y=cos(t. 2);
plot3(x,y,t);

133/435

@ Define the function

@ Set up a mesh

© "Study” the function:

e Contour: contour(x,y,z)
e Color map: pcolor(x,y,z)

e 3D view: surf(x,y,z)

Process

[x,y]l=meshgrid(-4:0.1:4);
z=(x. 2-y. 2) *exp(~(x. 2+y."2));
pcolor(x,y,z);

contour (x,y,z) ;
surf (x,y,2);

shading interp;
colormap gray;

135/435

More 3D plotting

e 3D bar graph: bar3(x,y)
e 3D horizontal bar graph: bar3h(x,y)

e 3D pie chart: pie3(x)

Outline

@ 2D plotting

@ 3D plotting

© Curve fitting

What, why, when?

Engineering, physics, or applied mathematics: many problems and
experiments relate several variables

e How do they relate to each other?

e Is it possible to find a model or an equation?

What, why, when?

Engineering, physics, or applied mathematics: many problems and
experiments relate several variables

e How do they relate to each other?

e Is it possible to find a model or an equation?

Problem: find the best values to match what is observed

e Parametric fitting

e Non-parametric fitting

@® Collect data

@® Import data into MATLAB
® Open curve fitting tool

© Determine the best fit

O Extrapolate the data

Parametric fitting

Getting started

@ Collect data — done: US population from 1790 to 1990
@ Import data into MATLAB — load census

® Open curve fitting tool — cftool

Applying a fit

@® Provide a name for the fit
® Select cdate for “X data”
© Select pop for "Y data”

O Test various types with different fit names

Finding a better fit

@ View residuals: “View" — “Residuals Plot”

® Change axis limits to predict the future: “Tools” — “Axes
Limits”

© Compare the “SSE" and the “Adj R-sq” for the different fits

O Adjust confidence level: “View" — “Prediction Bounds”

Finding a better fit

@ View residuals: “View" — “Residuals Plot”

® Change axis limits to predict the future: “Tools” — “Axes
Limits”

© Compare the “SSE" and the “Adj R-sq” for the different fits

O Adjust confidence level: “View" — “Prediction Bounds”

On error/strange results, try to normalize the data

X=[0:3:20]; Y=[12 15 14 16 19 23 24];
interp1(X,Y,4.1)

plot(X,Y, '*')

hold;

xi=[4.1 5.3 8.2 12.6];
yi=interp1(X,Y,xi);
plot(xi,yi,'or');

143/435

X=[0:3:20]; Y=[12 15 14 16 19 23 24];
interp1(X,Y,4.1)

plot(X,Y, '*')

hold;

xi=[4.1 5.3 8.2 12.6];
yi=interp1(X,Y,xi);
plot(xi,yi,'or');

143/435

Key points

How to perform 2D plotting?
How to keep or erase the previous graph?
What is the use of plot3, contour, pcolor, and surf?

How to measure the quality of a fit?

«~ 7T

Chapter 6

Data types and structures

145/435

Outline

@ Data types

@ Example of application

© More data types

Main problematic

Previous chapters:

e Focused on high level problems

e Did not address the internal mechanisms of the program

Not all the data is the same:

e How information is represented in the computer
e Determine the amount of storage allocated to a type of data

Methods to encode the data

Available operations of that data

A simple example

Representing signed integers over 8 bits:

@ Signed magnitude: 7 bits for the numbers, 1 bit for the sign
— 2 ways to represent 0

A simple example

Representing signed integers over 8 bits:

@ Signed magnitude: 7 bits for the numbers, 1 bit for the sign
— 2 ways to represent 0

® Two’s complement: Invert all the bits and add 1 to negate a
number
e.g. 00101010 — 11010101 + 1 = 11010110
00101010 = —0-27 +25+23 + 2 =42
11010110 = —1-27 + 26 + 2% + 22+ 2 =86 — 128 = —42

Why data types?

Different numbers (integer, real, complex. ..)
Different range (short, long. . .)
Different precision (single, double. . .)

Different types = different memory usage, performance

Data types in MATLAB

ARRAY (full or sparse)

/N

logical char numeric cell structure java classes function handle

intl, uint? single3 double* user classes

1. int: int8, intl6, int32 and int64

2. uint: unit8, uintl6, uint32 and uint64

3. 32bits; realmax('single'), realmin('single') 4. 64 bits;
realmax, realmin

Numeric types

What is what:
e whos e isnan
e isnumeric e isinf

e isreal e isfinite

Numeric types

What is what:
e whos e isnan
e isnumeric e isinf

e isreal e isfinite

Two methods for numeric conversions:
e.g. cast(a, 'uint8') or unit8(a)

Char type

String: array of Unicode characters, specified by placing data
inside a pair of single quotes (e.g. a='test'; whos a)

Char type

String: array of Unicode characters, specified by placing data

inside a pair of single quotes (e.g.

Useful string functions:

e isletter

e isspace

e strcmp(sl,s2)

e strncmp(sl,s2,n)
e strncmpi(sl,s2,n)

e strcmpi(sl,s2)

a='test'; whos a)

strrep(sl,s2,s3)
strfind(sl,s2)
findstr(sl,s2)
num2str (a, FORMAT)

str2num(s)

Example

Exercise.
Input two numbers as strings and calculate their sum

clear all, clc;
numbers=input ('Input two numbers: ', 's');
space=strfind (numbers,' ');

numberi=str2num(numbers (1:space-1));
number2=str2num(numbers (space+1:end)) ;
numberl-+number?2

153/435

Outline

@ Data types

@ Example of application

© More data types

The fread and fwrite functions

fread(fd, count, precision): read count elements of type
precision

furite(fd, A, precision): write A as elements of type
precision

The fread and fwrite functions

fread(fd, count, precision): read count elements of type
precision

furite(fd, A, precision): write A as elements of type
precision

Important to know what precision is (how many bytes the type is)

A=3:10;

fd=fopen('test','w'); fwrite(fd,A,'int32');
fclose(fd);

fd=fopen('test','r'); fseek(fd,4*4, 'bof');

fread(£fd,4, 'int32'), ftell(£fd)
fseek(fd,-8, 'cof') ;fread(£fd,4,'int32"')
fclose(fd);

156/435

Lost in a file?

Alter the previous sample code by:
e Changing A
e Reading the numbers as int64

e Writing the numbers as double and reading them as int8

e Navigating in the file such as displaying consecutively: the
first and fourth elements

Outline

@ Data types

@ Example of application

© More data types

Structures

Structure: array with “named data containers” called fields.
Fields can be any kind of data

Structures

Structure: array with “named data containers” called fields.
Fields can be any kind of data

Student
Name John Doe
Gender Male
Marks A, A+, B-

student(1)= struct('name','iris num',

'marks', [30 65 42]);
student (2)= struct('name','jessica wen',

'female',

'gender', 'female', 'marks', [98 87 73]);
student (3)= struct('name', 'paul wallace',
'gender', 'male','marks', [65 72 68]);

'gender'’, ...

160/435

student(1)= struct('name','iris num',
'female', 'marks', [30 65 42]);
student (2)= struct('name','jessica wen',...
'gender', 'female', 'marks', [98 87 73]);
student (3)= struct('name','paul wallace',...
'gender', 'male','marks', [65 72 68]);

'gender'’, ...

student (3) .gender
mean ([student (1:3) .marks])

160/435

student (1)= struct('name','iris num', 'gender',...
'female', 'marks', [30 65 42]);

student (2)= struct('name','jessica wen',...

'gender', 'female', 'marks', [98 87 73]);

student (3)= struct('name','paul wallace',...

'gender', 'male','marks', [65 72 68]);

student (3) .gender
mean ([student (1:3) .marks])

[m,il=max ([student (1:3) .marks]);
student (ceil(i/3)) .name

160/435

Key points

What is a data type?
Cite the most common data types
What is a data structure?

Why are data structure of a major importance?

«~ 7T

Chapter 7

Introduction to C

162/435

Outline

@ Basics on C

@® From C to machine code

® Functions and libraries

Unix OS implemented in assembly
New hardware — new possibilities
New possibilities — new code
AT&T Bell Labs 1969-1973

Ken Thompson + Dennis Ritchie

C as derived from B a strip-down
version of BCPL

The birth of C

Why using C?
Main characteristics:
e One of the most widely used languages
e Available for the majority of computer architectures and OS

e Many languages derived from C

Why using C?
Main characteristics:
e One of the most widely used languages
e Available for the majority of computer architectures and OS

e Many languages derived from C

Advantages of C:

e Performance

Interface directly with hardware

e Higher level than assembly

Low level enough

Zero overhead principle

Development environment

Common software to write C code:

e Text editor + compiler
e Code::Blocks, Geany, Xcode, Clion
o Microsoft visual C++

Development environment

Common software to write C code:

e Text editor + compiler
e Code::Blocks, Geany, Xcode, Clion
o Microsoft visual C++

Common C compilers:
e gcc (GNU C Compiler)

e icc (Intel C Compiler)

Outline

@ Basics on C

@ From C to machine code

® Functions and libraries

A first example

gm-base.c

#include <stdio.h>
int main) {

printf ("good morning!\n");

}

Compilation: gcc gm-base.c -o gm-base

A first example

gm-base.c

#include <stdio.h>
int main) {

printf ("good morning!\n");

}

Compilation: gcc gm-base.c -o gm-base
Program structure:
e The main function is compulsory, and must be unique
e Generic function prototype:
OutputType FunctionName(InputType InputName,...){

function’s body

}

The #include instruction

Roles of a header file:

e Define function prototypes
e Define constants, data types. ..

e A function used in a program must have been defined earlier

Syntax to include header.h:

e Known system-wide: #include<header.h>

e Unknown to the system: #include "/path/to/hearder.h"

The #include instruction

Roles of a header file:

e Define function prototypes
e Define constants, data types. ..

e A function used in a program must have been defined earlier

Syntax to include header.h:

e Known system-wide: #include<header.h>

e Unknown to the system: #include "/path/to/hearder.h"

Result of #include<stdio.h>: gcc -E gm-base.c

The #define instruction

Goal:

e Set “type-less” read-only variables
e Hardcode values in the program

e Quickly alter hardcoded values over the whole file

The #define instruction

Goal:

e Set “type-less” read-only variables
e Hardcode values in the program

e Quickly alter hardcoded values over the whole file

gm-def.c

#include <stdio.h>
#define COURSE "VG101"

int main () {
printf ("good morning %s!\n",COURSE);
}

Result of #define: gcc -E gm-def.c

Taking advantage of #define
The #ifdef and #ifndef instructions:
e Test if some “#define variable” is (un)set

e Compile different versions of a same program

gm-ifdef.c gm-ifndef.c

#include <stdio.h> #include <stdio.h>
#define POLITE int main () {

int main () { #ifndef RUDE

#ifdef POLITE printf ("good morning!\n");
printf ("good morning!\n"); #endt f

#endif }

}

Result of #if (n)def: gcc -E gm-if(n)def.c

More on #define
Writing simple macros:
e Define type-less functions
e Perform fast and simple actions
e To be used only on specific circumstances (e.g. min/max)

e Do not use for regular functions

gm-macro.c

#include <stdio.h>
#define SPEAK(z) printf("good morning /s!\n",z)
int main) {

SPEAK("VG101");
SPEAK ("VE475") ;
}

Result of macros: gcc -E gm-macro.c

Common compilation errors

Often the compilation process fails because of:

e Syntax errors

Incompatible function declarations

Wrong Input and Output types

Operations unavailable for a specific data types

Missing function declarations

Missing machine codes for some functions

Outline

@ Basics on C

@® From C to machine code

© Functions and libraries

More complex programs

The main function:

e Never write a whole program in the main function
e Use the main function to dispatch the work to other functions

e Most of the coding must be done outside of the main function

Reminders:
e Always add comments to the code
e A single line: start with //
e Multiple lines: anything between /* and */

e As much as possible use a function per task or group of tasks

o If the program becomes large split it over several files

A long program

ans-orig.c

#include <stdio.h>
double answer(double d);
int main () {
double a;
scanf ("}1f",&a);
printf ("/1f\n", answer(a));
}
double answer(double d) {return d+1337;}

1
2
3
4
5
6
7
8

A long program

ans-orig.c

#include <stdio.h>
double answer(double d);
int main () {

double a;

scanf ("%1f",&a) ;
printf ("/1f\n", answer(a));

}
double answer(double d) {return d+1337;}

Functions and operators used:

e Display the integer contained in a: printf ("%d",a)
e Read and store an integer in a: scanf ("/d",&a)
e Both functions can take a variable number of parameters

e Arithmetic operators: +, -, /, %

Organising a long program

ans-main.c

#include <stdio.h>
#include "ans.h'"
int main () {

double a; scanf(")1f",&a); printf("}%1f\n", answer(a));
}

ans.c

1 double answer(double d) {return d+1337;}

ans.h

1 double answer(double d);

Compilation: gcc ans-main.c ans.c -o ans

Libraries

Library: collection of functions, macros, data types and constants

Example.
The C mathematics library:

e Mathematical functions (log, exp, trigonometric, floor. ..)
e Add header: #include <math.h>

e Add the corresponding compiler flag: gcc -1m

Libraries

Library: collection of functions, macros, data types and constants

Example.
The C mathematics library:

e Mathematical functions (log, exp, trigonometric, floor. ..)
e Add header: #include <math.h>
e Add the corresponding compiler flag: gcc -1m

math.c

#include <stdio.h>
#include <math.h>

int main() {
printf ("/g\n",gamma (sqrt (cosh(M_PI/2))));
}

Key points

Why is C one of the most widely used programming language?
Is C a compiled or interpreted language?
How to transform a C program into machine code?

Why are data types of a major importance?

«~ 7T

Chapter 8

Data types in C

JEZE

Outline

@ Basics on data types

@ More on data types

© Beyond data types

Types of variables

Three main categories of variables:

e Constant variables: #define PI 3.14159
e Global variables: defined for all functions

e Local variables: defined only in the function

Initialising variables

Common use:

e Variables for #define are UPPERCASE
e Other variables are lowercase
e Variables name not supposed to be longer than 31 characters

e Variable name start with _ or a character

Basic data types

C data types:

Integer: int

Number with a fractional part, single precision: float
e Number with a fractional part, double precision: double

Character: char

Valueless type: void

Basic data types

C data types:

Integer: int

e Number with a fractional part, single precision: float

e Number with a fractional part, double precision: double
e Character: char

e Valueless type: void

Amount of storage and range of values for each type not defined
(except char)

Optional specifiers

Different variations available:

e char: signed char, unsigned char

e int: short int, signed short int, unsigned short
int, signed int, unsigned int, long int, signed
long int, unsigned long int, long long int,
signed long long int, unsigned long long int

e double: 1long double

Optional specifiers

Different variations available:

e char: signed char, unsigned char

e int: short int, signed short int, unsigned short
int, signed int, unsigned int, long int, signed
long int, unsigned long int, long long int,
signed long long int, unsigned long long int

e double: 1long double

Extra variations: static, register, extern, volatile

Outline

@ Basics on data types

@ More on data types

© Beyond data types

Data types

Basic number types:

e int size limitation
e float 7 digits of precision, from 1.E-38 to 3.E+38
e double 13 digits of precision, from 2.E-308 to 1.E+308

1 float a=1.0; int b=3; double c;

187/435

Data types

Characters:

e No type for strings, only for single characters
e Strings as arrays of characters
e Characters are enclosed in single quotes: char a='a';

e Strings are enclosed in double quotes

Data types

Characters:

e No type for strings, only for single characters
e Strings as arrays of characters
e Characters are enclosed in single quotes: char a='a';

e Strings are enclosed in double quotes

American Standard Codes for Information Interchange (ASCII)

Wrong data type

typesl.c

#include <stdio.h>
int main() {

printf ("%d %f\n",7/3,7/3);
}

Wrong data type

typesl.c

#include <stdio.h>
int main() {

printf ("%d %f\n",7/3,7/3);
}

types2.c

#include <stdio.h>
int main() {
printf ("%d %f\n",7/3,7.0/3);

int a=42; char b=(char) a;
printf ("%c\n",Db);
}

Wrong data types

Understanding the code:
e What do %f, %d and %c mean?

What is the type of 7/3 for the compiler?

What is displayed for b?

What is this character corresponding to?

Why is this character displayed?

Type casting

Changing data type:

e Float to int: float a=4.8; int b= (int) a;

e Int to char: int a=42; char b=(char) a;

Type casting

Changing data type:

e Float to int: float a=4.8; int b= (int) a;

e Int to char: int a=42; char b=(char) a;

Danger!
Think of the size...

Try double to char, int to float

Example

types3.c

#include <stdio.h>
int main() {
float c=4.8; printf("%d\n", (int)c);
int £=42; printf("Jc\n", (char)f);
double a=487511234.7103;
char b=(char) a;
printf ("%c, %c\n",b,a);
int d=311;
float e=(float) d;
printf("%d %f\n",d,e);
printf ("%c\n",d);

Example

Understanding the code:

e Which type casting work well?

What is the length of a char?

What is the length of an int?

What is printed for d?

What is the issue when displaying d as a char?

Outline

@ Basics on data types

@ More on data types

© Beyond data types

What, why data types?

More data types in C:

e Bits € {0,1}, 1 byte = 8 bits

Operating data at low level, e.g. shift «, »

char does not necessarily contains a character

Logical operation of a major importance

Focus on efficiency, data representation

Structures, enumerate, union

Structures

#include <stdio.h>
#include <math.h>
typedef struct _person {
char* name;
int age;
} person;
int main () {
person al={"albert",32};
person gil;
gil.name="gilbert";
gil.age=23;
struct _person so={"sophie",56%};
printf("%s %d\n",al.name, al.age);
printf("%s %d\n",gil.name, gil.age);
printf("%s %d\n",so.name, so.age);

1
2
3
4
5
6
7
8
)

e e e =
[I N R =)

Structures

Understanding the code:

e How is a structure defined?
e How to define a new type?
e What are two ways to set the value of a field in a structure?

e How to access the values of the different fields in a structure?

Functions and structures

#include <stdio.h>
typedef struct person {
char* name; int age;
} person_t;
person_t older(person_t p, int a);
int main () {
person_t al={"albert",32};
al=older(al,10);
printf("%s %d\n",al.name,al.age);
}
person_t older(person_t p, int a) {
printf("%s %d\n",p.name, p.age);
p.age+=a;
return p;

3

1
2
3
4
5
6
7
8
9

Functions and structures

Understanding the code:

e How is the age increased?
e How are the person'’s information sent to a function?
e How to return the person’s information after the function?

e How many output can a C function have?

Key points

What are the main data types in C?
How to perform type casting?
Can a char contain something else than a character?

How to define and use structures on C?

«~ 7T

Chapter 9

Syntax and control statements

201/435

Outline

@ General syntax

@® Conditional statements

© Loops

Program structure

Reminder:
e First lines e Input
e Function name e Output

e Brackets e End of line

Blocks

blocks.c

#include <stdlib.h>
#include <stdio.h>
int main () {
{
int a=0;
printf("%d ",a);
}
{
double a=1.124;
printf("%f ",a);
}
{

1
2
3
4
5
6
7
8
9

=
= o

char a='a';
printf("c ",a);
}
// printf("4d",a);
}

Shorthand operators

Common shortcuts:

o Increment: ++, e.g. at++ & a=atl

e Decrement: ——, e.g. a—— & a=a-1

Add: x+=y & x=xty

Subtract: x-=y < x=x-y

Multiply: x*=y & x=x*y

Divide: x/=y & x=x/y

Jumping!

#include <stdio.h>
int main() {
int i=0;
printf ("I am at position %d\n",i);
i++;
goto end;
printf ("I am at position %d\n",i);
end:
i++;
printf ("It all ends here, at position %d\n",i);
return 0;
i++;

printf("Unless it's here at position %d\n",i);

Jumping!

Understanding the code:

e What positions are displayed?
e Why are some positions skipped?
e How to use the goto statement?

e Why should the goto statement (almost) never be used?

Example

Write a short C program where the main function calls a function
“apbpl” which takes two floats a and b as input and returns the
nearest integer to a+ b+ 1.

Hint: how to round a real number to the nearest integer?

Solution

apbpl.c

#include <stdio.h>
int apbpl (float a, float b);
int main) {
float a, b;
scanf ("%4f %f", &a,&b);
printf ("%d\n", apbpl(a,b));

}

int apbpl (float a, float b) {
a++; at+=b;
return((int) (a+0.5));

}

Solution

apbpl.c

#include <stdio.h>
int apbpl (float a, float b);
int main) {
float a, b;
scanf ("%4f %f", &a,&b);
printf ("%d\n", apbpl(a,b));

}

int apbpl (float a, float b) {
a++; at+=b;
return((int) (a+0.5));

}

Questions: how are shorthand operators and casting used here?

Outline

@ General syntax

@ Conditional statements

© Loops

Important operators

Basics on conditional statements:

e No boolean type

0 & False, # 0 & True

<, <=, >, >=, ==, | =: return 1 if True, 0 otherwise

e Not: !, and: &&;, or: ||

Operations on bits: and: &, or: |, xor: *

Note: && and || are short-circuit operators; second operand only
evaluated if result not fully determined by first one

1 condition 7 expressionl : expression2

212/435

1 condition 7 expressionl : expression2

1 #define MAX(a,b) a>=b ? a : b

212/435

if (condition) { switch(variable) {
statements; case valuel:

} statements;

else { break;
statements; case value?2:

} statements;
break;
default:

statements;
break;

213/435

1
2
3
4
5
6
7
8
9

e e e e =
© 0w N o e W N = O

Example

cards.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define ACE 14
#define KING 13
#define QUEEN 12
#define JACK 11
int main () {
int c;
srand(time (NULL)) ; c=rand()7%13+2;
c=13;
switch (c) {
case ACE: printf("Ace\n"); break;
case KING: printf("King\n"); break;
case (UEEN: printf("Queen\n"); break;
case JACK: printf("Jack\n"); break;
default: printf("%d\n",c); break;

Example

Understanding the code:

e Write this code using the if statement

e Adapt the code such as to display the complete card name
(e.g. “Ace of spades”)

e What happens if a break is removed?

e Explain why and compare to the behavior in MATLAB

Outline

@ General syntax

@® Conditional statements

© Loops

1 while (conditions) { 1 do {

statements; 2 statements;
3 } 3 } while (conditions);

217/435

while (conditions) { do {
statements; statements;
T } while (conditioms);

int i=0; int i=0;
while(i++<3) { do {

printf ("%d",1); printf ("%d",i);
T } while(i++<3);

217/435

1 for(init;test;step) { statements; }

218/435

1 for(init;test;step) { statements; }

for(i=0; i<m; i++) fct=1;
printf("/d ", 1i); for(i=1;i<=n;i++) fct*=i;
i=0; for(;i<m;i++) printf("/d ", fct);
printf("%d ", i); for(i=1,fct=1;i<=n;fct*=i,i++);

for(i=0; i<n;) printf("%d ", fct);
{printf ("%d\n",i); i++;} for(i=1,fct=1;i<=n;fct*=i++);
for(i=0;i<n;) printf ("%d\n", fct);
printf("%d ",i++);

218/435

The break and continue statements

Acting from within a loop:

e Exit a loop: break

e Go to the next iteration in the loop: continue

for(i=0;i<10;i++) {
scanf ("%d",&n) ;
if (n==0) break;

else if (n>=10) continue;
printf ("%d\n", n);
}

219/435

Key points

How are blocks defined?
What are the shorthand operators?
How to perform condition statements in C?

How to write loops in C?

«~ 7T

Chapter 10

Arrays and pointers

Outline

O Arrays

@ Pointers

© Pointers and arrays

What is an array?

Array: indexed collection of values of a same type (e.g. array of
integers, floats. ..), first index being 0

Array declared through three parameters:
e type
e name

® size

e.g. int a[3]; or char b[4];

What is an array?

Array: indexed collection of values of a same type (e.g. array of
integers, floats. ..), first index being 0

Array declared through three parameters:
e type
e name

® size

e.g. int a[3]; or char b[4];

What are the sizes in bits of the two previous arrays?

1 int al[4]={1,2,3,4};

224/435

1 int al[4]={1,2,3,4};

al[0]=0;
al1]++;

al[2]+=a[3];
for (i=0; i<4;i++) printf("%d\n",alil);

224/435

Arrays and functions

array-fct.c

#include <stdio.h>
double average(int arr[], size_t size);
int main () {
int elem[5]={1000, 2, 3, 17, 50};
printf ("%1f\n",average(elem,5));
}
double average(int arr[], size_t size) {
int i;
double avg, sum=0;
for (i = 0; i < size; ++i) {
sum += arr[i];
}
avg = sum / size;
return avg;

1
2
3
4
5
6
7
8
9

e e e =
g W N = O

Arrays and functions

Understanding the code:

e Why is the prototype of the function average mentioned
before the main function?

e How to pass an array to a function?
e |s the size of an array automatically passed to a function?

e When passing an array to a function how to ensure the
function knows its size?

Problem

The following C program simulates multiple die rolls and print how
many times each side appears. Adapt it to handle two dice.

die.c

#include <stdio.h>

#include <time.h>

#define SIDES 6

#define ROLLS 1000

int main () {
int i, tab[SIDES];
srand (time (NULL)) ;
for (i=0; i < SIDES; i++) tab[i]=0;
for (i=0; i < ROLLS; i++) tab[rand()%SIDES]++;
for (i=0;i<SIDES;i++) printf("%d (hd)\t",i+1,tab[i]);
printf("\n");

1
2
3
4
5
6
7
8
9

=
N = O

Question: how is the array initialized?

1
2
3
4
5
6
7
8
9

Solution

#include <stdio.h>
#define DICE 4
#define SIDES 10
#define ROLLS 100000
int main () {
int i, j, t, res[DICE+*SIDES-DICE+1]={0};
srand (time (NULL)) ;
for (i=0; i < ROLLS; i++) {
t=0;
for(j=0;j<DICE;j++) t+=rand()’SIDES;
res[t]++;
}
for (i=0;i<DICE*SIDES-DICE+1;i++) {
printf("/d (%d) ",i+DICE,res[il);
}
printf("\n");
}

Solution

Understanding the code:

e How is the array initialized?
e What is DICExSIDES-DICE+17
e Why are all the elements of the table res initialized to 07

e What is the variable t storing?

Multidimensional arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DICE 10
#define SIDES 6
#define ROLLS 1000
int main () {
int i, j, t, table[DICE][ROLLS], res[DICE*SIDES-DICE+1];
srand (time (NULL));
memset (res, 0, (DICE*SIDES-DICE+1)*sizeof(int));
for(i=0;i<DICE;i++)
for (j=0; j < ROLLS; j++) tablel[i][jl=(rand()%SIDES)+1;
for (i=0;i<ROLLS;i++) {
t=0;
for(j=0;j<DICE;j++) t+=table[j]l[i];
res[t-DICE] ++;
}
for (i=0;i<DICE*SIDES-DICE+1;i++) printf("/d (%d) ",i+DICE,res[i]);
printf("\n");

1
2
3
4
5
6
7
8
9

I i S
H O © 00 N O Uk W N = O

Summary questions

In the previous three short programs:

What three ways were used to initialize the arrays?

Why is i + 1 in the first program and then i + DICE in the
two others printed, instead of 7

In the multidimensional array program, is the order of the
loops important? That is loop over DICE and then ROLLS vs.
loop over ROLLS and then DICE.

Rewrite the previous code (10.230) using a function taking
dice, sides, and rolls as input

Explain how multi-dimensinoal arrays are stored in the memory

Outline

(1 WNEVS

@ Pointers

© Pointers and arrays

What is a pointer?

Pointer:

e Something that directs, indicates, or points

e Low level but powerful facility available in C

What is a pointer?

Pointer:

e Something that directs, indicates, or points

e Low level but powerful facility available in C

Pointer vs. variable:

e Variable: area of the memory that has been given a name

e Pointer: variable that stores the address of another variable

int a ~ address of a
P t—

204 _1... ... 1234 1232 1230 --- -3 210
1233 1231

What is a pointer?

Pointer:

e Something that directs, indicates, or points

e Low level but powerful facility available in C

Pointer vs. variable:

e Variable: area of the memory that has been given a name

e Pointer: variable that stores the address of another variable

int a ~ address of a
P t—

204 _1... ... 1234 1232 1230 --- -3 210
1233 1231

A pointer points to a variable, it is the address of the variable

How to use pointers

Handling pointers:

e If a variable x is defined, then its address is &x

e If the address of a variable is x, then the value stored at this
address is *x;

e The operator “*" is called dereferencing operator

How to use pointers

Handling pointers:

e If a variable x is defined, then its address is &x

e If the address of a variable is x, then the value stored at this
address is *x;

e The operator “*" is called dereferencing operator

Type of a pointer:

e A pointer is an address represented as a long long int
e It is easy to define a pointer of pointer
e The type of the variable stored at an address must be provided

e Defining a pointer: type* variable;

Why using pointers?

swap-p.c

#include <stdio.h>
void swap(int a,int b);
int main() {
int a=2, b=b5;
swap(a,b);
printf("a = %d, ",a);
printf("b = %d\n",b);
return 0O;

#include <stdio.h>
void swap(int *a, int *b);
int main() {
int a=2, b=b5;
swap (&a,&b) ;
printf("a = %d, ",a);
printf("b = %d\n",b);
return O;
} }
void swap(int a,int b) { void swap(int* a,int* b) {
int temp=a; int temp=*a;
a=b; *a=xDb;
b=temp; *b=temp;
} }

1
2
3
4
5
6
7
8
)

© 0 N O o A W N e

Why using pointers?

Understanding the code:

e What is the difference between the two programs?

Which one returns the proper result?

Why is one of the programs not working?

Why is the other program working?

Why were pointers used in the second program?

Example
ptr.c

#include <stdio.h>
void pointers();
int main() {pointers();}
void pointers() {
float x=0.5; float *xpl;
float **xp2 = &xpl; xpl = &x;
printf ("%11u %p\n/p\n/f ",xpl,&x,*xp2,**xp2) ;
x=**xp2+*xpl; printf("/f\n",x);
}

1
2
3
4
5
6
7
8
)

Questions:

e Without running the program guess the final value of x
e Alter the program to display *xp2

e Explain the result

Dynamic memory

Possible to allocate memory as a block of a certain type (e.g. a
block of n integers or floats)

e malloc(n): allocates n bytes of memory, and returns a
pointer on the first chunk (address of the first chunk)

e calloc(n,s): allocates n chunks of memory, each one of size
s bytes, and returns a pointer on the first chunk (address of
the first chunk); memory is set to 0

e realloc(ptr,s): changes the size of the memory block
pointed to by ptr to s bytes

o free(ptr): frees the memory space pointed to by ptr

1 int *a=malloc(6*sizeof (int));

239/435

1 int *a=malloc(6*sizeof (int));

1 printf("%d",*a);

239/435

1 int *a=malloc(6*sizeof (int));

1 printf("%d",*a);

1 printf("%d",*(a+4));

239/435

1 int *a=malloc(6*sizeof (int));

1 printf("%d",*a);

1 printf("%d",*(a+4));

239/435

Pointers and structures

#include <stdio.h>
#include <stdlib.h>
typedef struct person {
char* name; int age;
} person_t;
int main O {
person_t al={"albert",32};
person_t* groupl=malloc(3*sizeof (person_t));
groupl->name="gilbert";
groupl->age=34;
* (groupl+1)=(person_t){"joseph",28};
(*(group1+2)) .name="emily";
(groupl+2)->age=42;
printf("%s %d %d\n",al.name, al.age, sizeof (person_t));
printf("%s %d\n", (groupl+1l)->name, (groupl+2)->age);
free(groupl);
return 0O;

1
2
3
4
5
6
7
8
9

e e i e =
W N ke W N = O

Pointers and structures

Understanding the code:

e How to use malloc?

e What are the different ways to access elements of a structure
when the variable is not a pointer?

e What are the different ways to access elements of a structure
when the variable is a pointer?

e Why should the pointer be freed at the end of the program?

General notes
Remarks on pointers:

e Not possible to choose the address (e.g. int *p; p=12345;)
e The NULL pointer “points nowhere”

e An uninitialized pointer “points anywhere” (e.g. float *a;)

char* p = malloc(100);
if (p == NULL) {

fprintf(stderr, "Error: out of memory");
exit(1);

}

242/435

Outline

(1 WNEVS

@ Pointers

© Pointers and arrays

Pointer vs. array

arr-ptr.c

#include <stdio.h>

void ptr_vs_arr();

int main () {
ptr_vs_arr();

}

void ptr_vs_arr(){
char c='c';
char a[]l="good morning!";
char* p="Good morning!";
printf ("%c %c\n",al0], #*p);
al0l='t"; //#p="t";
p=a; //a=p; p=c; p=al[0]; p=Ca;
pt+; //at+;
printf ("%c %c %d %d\n",al0], *p,sizeof(a), sizeof(p));

1
2
3
4
5
6
7
8
9

e e =
g W N = O

1
2
3
4
5
6
7
8
9

e e =
g W N = O

Pointer vs. array

arr-ptr.c

#include <stdio.h>

void ptr_vs_arr();

int main () {
ptr_vs_arr();

}

void ptr_vs_arr(){
char c='c';
char a[]l="good morning!";
char* p="Good morning!";
printf ("%c %c\n",al0], #*p);
al0l='t"; //#p="t";
p=a; //a=p; p=c; p=al[0]; p=Ca;
pt+; //at+;
printf ("%c %c %d %d\n",al0], *p,sizeof(a), sizeof(p));

An array contains the elements, a pointer points to them.

Arrays as pointers

Create an array a containing the four elements 1, 2, 3 and 4
Print &a[i], (a+i), a[i] and *(a+i)

Arrays as pointers

Create an array a containing the four elements 1, 2, 3 and 4
Print &a[i], (a+i), a[i] and *(a+i)

arr-ptr2.c

#include <stdio.h>
void arr_as_ptr(){
int i; int al4]={1, 2, 3, 4};
for(i=0;i<4;i++) {
printf ("&al[%d]l=Vp (a+%d)=Vp\n"\

"al[%dl=%d *(a+%d)=%d\n",\
i,&alil,i, (a+i),i,alil,i,*(a+i));
}
}

int main () {arr_as_ptr();}

1
2
3
4
5
()
7
8
9

e e e =
Ul W N R O

16
17

19
20

Revisiting the dice

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void roll_dice(int dice, int sides, int rolls){
int i, j, t;
int *res=calloc((dice*sides-dice+1),sizeof(int));
int *table=malloc(dice*rolls*sizeof(int));
for(i=0;i<rolls;i++) {
for (j=0; j < dice; j++) tablel[i*dice+jl=(rand()’sides)+1;
}
for (i=0;i<rolls;i++) {
t=0; for(j=0;j<dice;j++) t+=table[i*dice+j]; res[t-dice]++;
}
for (i=0;i<dice*sides-dice+1;i++) printf("%d (%d) ",i+dice,res[il);
printf("\n"); free(table); free(res);
}
int main () {
int dice=4, sides=6, rolls=10000000;
srand (time (NULL)); roll_dice(dice,sides,rolls);
}

Revisiting the dice

Understanding the code:

e How is the array table handled?

What happened in the previous version with 1000000 rolls?

Is the same happening now, why?

How is the program organised?

e How are malloc and calloc used?

Arrays, pointers and functions

Problem:

e No limit on the number of input
e Only one output

e Output cannot be an array

Arrays, pointers and functions

Problem:

e No limit on the number of input
e Only one output

e Output cannot be an array

Solution: pointers

Arrays, pointers and functions

Problem:

e No limit on the number of input
e Only one output
e Output cannot be an array

Solution: pointers

Back to the swap function (10.235)

Key points

What are the three information necessary to define an array?
What are &a and *a?

Given a pointer on a structure how to access a specific field?
Are pointers and array the same?

When memory has been allocated and is not needed anymore,
what must be done?

How to have more than one output in a function?

«~ 7T

Chapter 11

Algorithm and efficiency

ssssssss

Outline

@ Algorithms

@ Standard library

© A few final examples

What is already known

Reminders:

e Algorithm < recipe

e 3 main components:

e Input
e Output

e |nstructions

e Clear algorithm often easy to implement

e Adjust algorithm to fit the language

Flowchart

[Lamp does not work]

l

Plug in lamp

Replace bulb

Buy a new lamp

Design paradigms

Most common types of algorithms:

e Brute force — often most obvious, rarely best

Divide and conquer — often recursive

Search and enumeration — model problem using a graph

Randomized algorithms — feature random choices

e Monte Carlo algorithms — correct answer with high probability

e Las Vegas algorithms — alway correct answer but random
running time

Complexity reduction — rewrite a problem into an easier one

Efficiency

When writing a program:

e How efficient does the program need to be?

What language to choose?

Is it possible to optimize the code?

What size are the Input?

Is it worth implementing a more complex algorithm?

Computational complexity

Complexity: measures how hard it is to solve a problem

Common complexity types:

e Best-case complexity
e Average-case complexity
e Worst case-complexity

e Time vs. space complexity

Outline

@ Algorithms

@ Standard library

© A few final examples

<stdio.h>

Traveling in a file:

e Open a file: FILE *fopen(const char *path, const
char *mode); where mode is one of r, r+, w, w-+, a, a+;
NULL returned on error

e Close a file: int fclose(FILE *fp); return O upon
successful completion

e Seek in a file: int fseek(FILE *stream, long offset,
int whence); where whence can be set to SEEK_SET,
SEEK_CUR, or SEEK_END

e Current position: long ftell(FILE #*stream);

e Back to the beginning: void rewind(FILE *stream) ;

<stdio.h>

Reading and writting:

o Write in stream:

int fprintf(FILE *stream, const char *format, ...);

e Write in string:

int sprintf(char *str, const char *format, ...);
e Flush a stream: int fflush(FILE *stream);

e Read size — 1 characters from a stream:
char *fgets(char *s, int size, FILE *stream);

e Read next character from stream and cast it to an int:
int getc(FILE *stream) ;

<string.h>

Strings:

Length of a string: size_t strlen(const char *s);

Copy a string:
char *strcpy(char *dest, const char *src);

Copy at most n bytes of src:
char *strncpy(char *dest, const char *src, size_t n);

Compare two strings:
int strcmp(const char *sl1, const char #*s2);
returned intis < 0, 0, > 0 if s1 < s2, sl =52, sl > s2

Compare the first n bytes of two strings:
int strncmp(const char *sl, const char *s2, size_t n);

Locate a character is a string:
char *strchr(const char *s, int c);

<string.h>

Accessing memory:

e Fill memory with a constant byte:
void *memset(void *s, int c, size_t n);

e Copy memory area, overlap allowed:
void *memmove(void *dest, const void *src, size_t n);

e Copy memory area, overlap not allowed:
void *memcpy(void *dest, const void *src, size_t n);

<ctype.h>

Classifying elements (returns 0 if FALSE and nonzero if TRUE):

e int isalnum(int c);
e int isalpha(int c);
e int isspace(int c);
e int isdigit(int c);
e int islower(int c);
e int isupper(int c);
Converting uppercase or lowercase
e int toupper(int c);

e int tolower(int c);

<math.h>

A few mathematical functions (input and output are doubles):

e Trigonometry: sin(x), cos(x), tan(x)

e Exponential and logarithm:
exp(x), log(x), log2(x), loglO(x)

e Power and square root: pow(x,y), sqrt(x)

e Rounding: ceil(x), floor(x)

<stdlib.h>

Mathematics:

e Absolute value: int abs(int j);

e Quotient and remainder:
div_t div(int num, int denom);
div_t: structure containing two int, quot and rem

Pointers:
e void *malloc(size_t size);
e void *calloc(size_t nobj, size_t size);
e void *realloc(void *p, size_t size);

e void free(void *ptr);

<stdlib.h>
Strings:

e String to integer: int atoi(const char *s);
e.g. atoi("512.035"); returns 512

e String to long:
long int strtol(const char *nptr, char **endptr, int base);

Misc:
e Execute a system command: int system(const char *cmd);

e Sorting:
void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

e Searching:
void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size, int (*compar) (const void *,
const void *));

<time.h>

Useful functions for simple benchmarking:

e Getting time: time_t time(time_t *t);

e Calculate time difference:
double difftime(time_t timel, time_t timeO);

Outline

@ Algorithms

@ Standard library

© A few final examples

1
2
3
4
5
6
7
8
9

e e e e e e =
© X N U W N = O

Linear search

linear-search.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define SIZE 200
#define MAX 1000
int main () {
int i, n, k=0;
int datal[SIZE];
srand (time (NULL)) ;
for(i=0; i<SIZE; i++) datal[il=rand()7MAX;
n=rand () %MAX;
for(i=0; i<SIZE; i++) {
if (data[il==n) {
printf("/%d found at position %d\n",n,i);
k++;
}
}
if (k==0) printf("/d not found\n",n);

Linear search

Adapt the previous code to:

e Read the data from a text file
e Read the value n for the standard input
e Exit the program when the first match is found

e Use pointers and dynamic memory allocation instead of arrays

Binary search

binary-search.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define SIZE 200
int main () {
int i, n, k=0, low=0, high=SIZE-1, mid;
int *data=malloc(SIZE*sizeof (int));
srand (time (NULL)) ;
for(i=0;i<SIZE;i++) *(data+i)=2*i;
n=rand () %*(data+i-1);
while(high >= low) {
mid=(low + high)/2;
if (n < *(data+mid)) high = mid - 1;
else if(n> *(data+mid)) low = mid + 1;
else {printf("}d found at position %d\n",n,mid);
free(data); exit(0);}

1
2
3
4
5
6
7
8
9

e e e =
@ Uk W N = O

}
printf("%d not found\n",n);
free(data);

N oE = e
o © 0w 3

Binary search

Using the previous code:

Write a clear algorithm for the binary search

For a binary search to return a correct result what extra
condition should be added on the data?

Compare the efficiency of a binary search to a linear search;
that is on the same data set compare the execution time of

the two programs

Adapt the previous code to use arrays instead of pointers

Selection sort

selection-sort.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define SIZE 200
#define MAX 1000
int main () {
int data[SIZE];
srand (time (NULL)) ;
for(int i=0; i<SIZE; i++) datal[il=rand()%MAX;
for(int i=0; i<SIZE; i++) {
int t, min = i;
for(int j=i; j<SIZE; j++) if(datal[min]>datal[j]l) min = j;
t = datalil;
datali] = datal[min];
data[min] = t;
}
printf("Sorted array: ");
for(int i=0; i<SIZE; i++) printf("%d ",datalil);
printf("\n");

1
2
3
4
5
6
7
8
9

I e e
© © W N3 WN RO

Selection sort

From the previous code write a clear algorithm describing
selection sorting

How efficient is the selection sort algorithm?

In the previous program what is the scope of the variables?
Rewrite the previous code into an independent function
Generate some unsorted random data and write it in a file;

then read the file, sort the data and use a binary search to
find a value input by the user

Key points

Is the most important, the algorithm or the code?
Cite two types of algorithms
How is efficiency measured?

Where to find C functions?

«~ 7T

Chapter 12

Introduction to C+—+

275/435

Outline

@ Before starting with C+-+

® Cand C++

© C++ syntax

A bit of history

Bjarne Stroustrup
BCPL too low level
Simula too slow
1979: C with classes
1983: C++

1985: first commercial
implementation of C++

1989: updated version, C++2.0
2011: new version, C++11, enlarged standard library
2014: C++14, bug fixes, minor improvements

Describing C++

C++ in a few words:

e Programming language

Compiled language

General-purpose programming language

Intermediate language

Object-oriented programming language

Reasons for using C++7

Highlights of C++:

o Performance

Higher level than C

Code often shorter/cleaner

Safer (more errors caught at compile time)

No runtime overhead

Outline

@ Before starting with C++

® Cand C++

© C++ syntax

Cvs. C++

What C++ brings:

e All aspects of C preserved
e Add new features

e Easier to write sophisticated programs

C++ is almost a superset of C

prg.cpp

#include <stdio.h>

int main () {

int a=b;
printf ("%d\n",a);

C or C4++7

Why easier?

A new appraoch:

e Easier to manage memory
e Object oriented programming

e New features for generic programming

Why easier?

A new appraoch:

e Easier to manage memory
e Object oriented programming

e New features for generic programming

Programmer focuses more on his problem and less on how to
explain it to the machine

1 int *x = \ 1 int *x = \

malloc(sizeof (int)*10); 2 (int *) malloc(sizeof (int)*10);

284/435

Outline

@ Before starting with C++

® Cand C++

© C++ syntax

Basics

Most of the syntax similar to C:

e Function declaration
e Blocks

e For loop

e While loop

e If statement

e Switch statement

e Shorthand operators
e Logical operators

e Short-circuit operators

e Conditional ternary operator

1 bool a=true, b=false;

1 #include <iostream>

2 using namespace std;

287/435

Namespace

A wider perspective:

e C: function names conflicts among different libraries

e C++: introduction of namespace

Each library/program has its own namespace

Standard library: std

1 cin >> x;

1 cout << "Enter a number (-1 = quit): ";

289/435

Input

input-pb.cpp

#include <iostream>
using namespace std;
void TestInput(){
int x = 0;
do {
cout << "Enter a number (-1 to quit): ";
cin >> x;
if(x != -1) cout << x << " was entered" << endl;
} while(x '= -1);
cout << "Exit" << endl;
}
int main() {TestInput(); return 0;}

1
2
3
4
5
6
7
8
9

=
N = O

Challenge: input a letter... and exit

1
2
3
4
5
6
7
8
9

e e =
Gos W N = O

input-okl.cpp

#include <iostream>
using namespace std;
void TestInput(){
int x = 0;
do {
cout << "Enter a number (-1 to quit): ";
if (! (cin >> %)) {
cout << "The input stream broke!" << endl;
x = -1;
}
if(x !'= -1) cout << x << " was entered" << endl;
} while(x '= -1);
cout << "Exit" << endl;
}
int main() {TestInput(); return 0;}

Input

input-ok2.cpp

#include <iostream>
using namespace std;
void TestInput(){
int x=0;
do {
cout << "Enter a number (-1 to quit): ";
cin >> x;
cin.clear();
cin.ignore(10000,'\n");
if(x !'= -1) cout << x << " was entered" << endl;
} while(x '= -1);
cout << "Exit" << endl;
}
int main() {TestInput(); return 0;}

1
2
3
4
5
6
7
8
9

Formating output

Nicer display requires #include <iomanip>

o Field width: setw(width)
e Justification: setiosflags(ios::left)
e Precision: setprecision(2)

e Leading character: setfill('z"')

Example

date.cpp

#include <iostream>
#include <tomanip>
using namespace std;
void showDate(int m, int d, int y) {
cout.fill('0');
cout << setw(2) << m << '/' << setw(2) << d << /!
<< setw(4) << y << endl;

[

}
int main(){
showDate(6,9,2014);
cout << setprecision(3) << 1.2244 << endl;

3

2
3
4
5
6
7
8
9

Operator and function overloading

Note on the operators:
e What are « and » in C?

e What about cin » x or cout « x7?

e An operator can be reused with a different meaning

Operator and function overloading

Note on the operators:
e What are « and » in C?

e What about cin » x or cout « x7?

e An operator can be reused with a different meaning

Similar concept: function overloading
fo.cpp

#include <iostream>
using namespace std;
double f(double a);
int f(int a);

int main () {cout << f(2) << endl; cout << f(2.3) << endl;}
double f(double a) {return a;}
int f(int a) {return a;}

Pointers

No more malloc, calloc and free:

e Memory for a variable: int *p = new int;

Memory for an array: int *p = new int[10];

Array size can be a variable (not recommended in C)

Return NULL on failure

Release the memory: delete p or delete[] p

Strings

Improvements on strings:

e Strings in C: array of characters
e Many limitations, low level manipulations

e New type in C++: string

1 #include <string>
2 string g="good "; string m="morning";

3 cout << g + m + "!\n";

207/435

1 #include <string>
2 string g="good "; string m="morning";

3 cout << g + m + "!\n";

207/435

File 1/0

Requires header: #include <fstream>

e Open file for reading: ifstream in("file.txt")
e Read from a file: in used in the same way as cin

Open a file for writing: ofstream out("file.txt")

Write in a file: out used in the same way as cout

e Read from a file, line by line: getline(in,s)

Example

Problem: copy the content of a text file into another text file and
display each line on the console output

Example

Problem: copy the content of a text file into another text file and
display each line on the console output

fio.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
void FileID() {
string s;
ifstream a("1.txt"); ofstream b("2.txt");
while(getline(a,s)) {b << s << endl; cout << s;}
¥
int main () {FileIO();return 0;}

1
2
3
4
5
6
7
8
9

i
[=}

1
2
3
4
5
6
7
8
9

e =
= W N = O

Example

fio-c.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
void FileIOO){
string s;
ifstream a("1.txt"); ofstream b("2.txt",ios::app);
if (a.is_open() && b.is_open()) {
while(getline(a,s)) {b << s << endl; cout << s;}
b.close(); a.close();
}
else cerr << "Unable to open the file(s)\n";
}
int main () {FileIO0();return 0;}

Defining constants

C C++
e #define PI 3.14 ® static const float PI=3.14;

e PI is a constant, value
cannot be changed
e Handled early in compilation
e PI is known by the compiler,
present in the symbol table

e No record of Pl at compile

time e Type safe

1 inline int sq(int x) { return x*x; %}

302/435

Key points

What is the difference between C and C++7
Cite a few novelties

How to handle input/output?

How to handle pointers?

What are operator and function overloading?

«~ 7T

Chapter 13

Object and class

33333333

Outline

@ Basic concepts

@ Writing and implementing a class

© Dealing with objects

Procedural programming

Programming approach used so far:

e Program written as a sequence of procedures

Each procedure fulfills a specific task

All tasks together compose a whole project

Further from human thinking

Requires higher abstraction

Object oriented programming

A new approach:

e Everything is an object
e Objects communicate between them by sending messages
e Each object has its own type

e Object of a same type can receive the same message

Object
An object has two main components:

e The data it contains, what is known to the object, its
attributes or data members

e The behavior it has, what can be done by the object, its
methods or function members

Object
An object has two main components:

e The data it contains, what is known to the object, its
attributes or data members

e The behavior it has, what can be done by the object, its
methods or function members

Example.
Given a simple TV:

e Methods: high level actions (e.g. on/off, channel, volume)
and low level actions (e.g. on internal electronics components)

e Attributes: buttons and internal electronics components

Class and instance

Class:

e Defines the family, type or nature of an object

e Equivalent of the type in “traditional programming”

Instance:

e Realisation of an object from a given class

e Equivalent of a variable in “traditional programming”

Example.
Two same TVs (same model/manufacturer) are two instances from
a same class

Outline

@ Basic concepts

@ Writing and implementing a class

© Dealing with objects

Class specification

Oder of definition:
@ Define the methods
® Define the attributes

Oder of definition:
@ Define the methods
® Define the attributes

Example.
Create an object circle:
@ What is requested (methods):
® move
® zZoom
® area
@® How to achieve it (attributes):
e Position of the center (x, y)

e Radius of the circle

Class specification

Class interface

The interface of a class:
e |s equivalent to header.h file in C
e Contains the description of the object
e Splits into two main parts
e Public definition of the class: user methods

e Private attributes/methods: not accessible to the user but
necessary to the “good functioning”

Example.
In the case of a TV:

e Public methods: on/off, change channel, change volume

Public attributes: remote control and buttons

Private methods: actions on the internal components

Private attributes: internal electronics

A note on visibility

Private or public:

e Private members can only be accessed by member functions
within the class

e Users can only access public members

Benefits:

e Internal implementation can be easily adjusted without
affecting the user code

e Accessing private attributes is forbidden: more secure

Default behavior: private
Good practice: render public only if necessary

Example

circle-v0.h

class Circle {
/* user methods (and attributes)*/
public:
void move(float dx, float dy);
void zoom(float scale);
float area();
/* implementation attributes (and methods) */
private:
float x, y;
float r;

[

2
3
4
5
6
7
8
)

[
(=)

};

[un
[

Instantiation

Using the created objects:

e Include the class using the header file

e Declare one or more instances

e Classes similar to structures in C:

e Structure only contains attributes

e Class also contains methods

e Calling a method on an object: instance.method

Example

main-v0.cpp

#include <iostream>

#include "circle_v0.h"

using namespace std;

int main () {
float s1, s2;
Circle circl, circ2;
circl.move(12,0);
sl=circl.area(); s2=circ2.area();
cout << "area: " << sl << endl;
cout << "area: " << g2 << endl;
circl.zoom(2.5);
sl=circl.area();
cout << "area: " << sl << endl;

Implementation

Getting things ready:

e Class interface is ready
e Instantiation is possible
e Does not compile: no implementation of the class yet

e Syntax: classname: :methodname

Example

circle-v0.cpp

#include "circle_v0.h"
static const float PI=3.1415926535;
void Circle::move(float dx, float dy) {
x += dx;
y += dy;
}
void Circle::zoom(float scale) {
r *= gcale;
}
float Circle::area() {
return PI * r * r;

}

Outline

@ Basic concepts

@ Writing and implementing a class

© Dealing with objects

Constructor and destructor

Automatic construction and destruction of objects:

Object not initialised by default (same as int i)
Constructor: method that initialises an instance of an object
Used for a proper default initialisation

Definition: no type, name must be classname

Important note: can have more than one constructor
Destructor: called just before the object is destroyed

Used for clean up (e.g. release memory, close a file etc. ..)

Definition: no type, name must be ~classname

Example

circle-vl.h

class Circle {
/* user methods (and attributes)*/
public:
Circle();
Circle(float r);
~Circle();
void move(float dx, float dy);
void zoom(float scale);
float area();
/* implementation attributes (and methods) */
private:
float x, y;
float r;
+;

Example

circle-vl.cpp

#include "circle_vi.h"

static const float PI=3.1415926535;

Circle: :Circle() {
x=y=0.0; r=1.0;

}

Circle: :Circle(float radius) {
x=y=0.0; r=radius;

}

Circle::~Circle() {}

void Circle::move(float dx, float dy) {
x += dx; y += dy;

}

void Circle::zoom(float scale) {
r *= scale;

}

float Circle::area() {
return PI * r * r;

}

1
2
3
4
5
6
7
8
9

e e e =
s W N = O

Example

main-v1l.cpp

#include <tostream>

#include "circle_vi.h"

using namespace std;

int main () {
float s1, s2;
Circle circl, circ2((float)3.1);
circl.move(12,0);
sl=circl.area(); s2=circ2.area();
cout << "area: " << gl << endl;
cout << "area: " << g2 << endl;
circl.zoom(2.5);

// cout << circl.r <<endl;
sl=circl.area();
cout << "area: " << g1 <<

1
2
3
4
5
6
7
8
9

[un
o

Life span

Three kinds of objects:

e Static or global: same life span as the program
e Automatic or local: within a block

e Dynamic: created and deleted manually

1 Circle(float radius=1.0);

1 move(float dx, float dy, float dz=0.0);

325/435

Problem

Rewrite the main. cpp file using two pointers: one for the two
circles and one for their areas. The pointers should be initialised in
the main function while all the rest of the work is performed in

another function.

Solution
main-ptr.cpp

#include <iostream>

[un

#include "circle_vi.h"

using namespace std;

void FctCirc(Circle *circ, float *s) {
*(circ+1)=Circle(3.1);
*g=circ->area(); s[1]=circ[1].area();
cout << "area: " << s[0] << endl;
cout << "area: " << *(s+1) << endl;
circ[0] .zoom(2.5); *s=circ->area();
cout << "area: " << s[0] << endl;

2
3
4
5
6
7
8
9

-
(=]

}

int main () {
float *s=new float[2]; Circle *circ; circ=new Circle[2];
FctCirc(circ,s);
delete[] s; delete circ; return O;

3

Key points

How to describe an object?
In what order should the attributes and methods be defined?
What are private and public?

How to use the constructor and destructor?

«~ 7T

Chapter 14

Inheritance and polymorphism

329/435

Outline

@ Inheritance

@ Polymorphism

© Multiple inheritance

Why using classes?

Benefits of classes:

e Object are not too abstract
e Closer from the human point of view
e Methods only applied to object which can accept them

e Things are organised in a simple and clear way

Managing a cow

cows-0.cpp

#include <iostream>
using namespace std;
class Cow {
public:
void Speak () { cout << "Moo.\n"; }
void Eat() {
if (grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";}
Cow(int £=0){grass=f;}
private: int grass;
I
int main () {
Cow c1(1);
cl.Speak(); cl.Eat(); cl.Eat(Q);
}

1
2
3
4
5
6
7
8
9

=
[=}

Managing a sick cow

What a sick cow does:

e Everything a cow does

e Take its medication

Managing a sick cow

What a sick cow does:

e Everything a cow does
e Take its medication
Two obvious possible strategies:
e Add a TakeMediaction() method to the cow

e Recopy the cow class, rename it and add TakeMedication()

What is inheritance?

Definitions:

e Act of inheriting

e Transmitting characteristics from the parents to the children

What is inheritance?

Definitions:

e Act of inheriting

e Transmitting characteristics from the parents to the children

Example.
A sick cow inherits all the characteristics from a cow:

e Attributes and methods from a cow

e More attributes and methods can be added

Managing a sick cow

cows-1.cpp

#include <iostream>
using namespace std;
class Cow {
public: Cow(int f=0){grass=f;}
void Speak () { cout << "Moo.\n"; }
void Eat() {
if (grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";}
private: int grass;
};
class SickCow : public Cow {
public: SickCow(int f=0,int m=0){grass=f; med=m;}
void TakeMed() {
if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";}
private: int med;
};
int main () {
Cow c1(1); SickCow c2(1,1);
cl.Speak(); cl.Eat(); cl.Eat(); c2.Eat(); c2.TakeMed(); c2.TakeMed();

1
2
3
4
5
6
7
8
9

e e e e =
DU s W NN = O

}

Private

Reminder on private members:

e Everything private is only available to the current class

e Derived classes cannot access or use them

Private inheritance:

e Default type of class inheritance
e Any public member from the base class becomes private

e Allows to hide “low level” details to other classes

Public

Reminder on public members:

e They are available to the current class

e They are available to any other class

Public inheritance:

e Anything public in the base class remains public

e Nothing private in the base class can be accessed

Public

Reminder on public members:

e They are available to the current class

e They are available to any other class

Public inheritance:

e Anything public in the base class remains public

e Nothing private in the base class can be accessed

Problem:

e Private is too restrictive while public is too open

e Need a way to only allow derived classes and not others

Protected

Protected members:

e Compromise between public and private
e They are available to any derived class

e No other class can access them

Possible to bypass all this security using keyword friend:

e Valid for both functions and classes
e A class or function declares who are its friends
e Friends can access protected and private members

e As much as possible do not use friend

Attributes and methods:

Summary on visibility

Visibility Cleses

Base Derived Others
Private Yes No No
Protected Yes Yes No
Public Yes Yes Yes

Summary on visibility
Attributes and methods:

Visibility —
Base Derived Others
Private Yes No No
Protected Yes Yes No
Public Yes Yes Yes
Inheritance:
Derived class

Base class

Public Private Protected
Private - - -
Protected Protected Private Protected
Public Public Private Protected

In practice mainly public inheritance is used.

Properly managing a sick cow

cows-2.cpp

#include <iostream>
using namespace std;
class Cow {
public: Cow(int f=0){grass=f;}
void Speak () { cout << "Moo.\n"; }
void Eat() {
if (grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";}
protected: int grass;
};
class SickCow : public Cow {
public: SickCow(int f=0,int m=0){grass=f; med=m;}
void TakeMed() {
if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";}
private: int med;
};
int main () {
Cow c1(1); SickCow c2(1,1);
cl.Speak(); cl.Eat(); cl.Eat(); c2.Eat(); c2.TakeMed(); c2.TakeMed();
}

1
2
3
4
5
6
7
8
9

e e e e =
DU s W NN = O

class Cow : public Mammal { class Zoo {
public:

Mammal *m; Reptile *r;

};

341/435

Zoo:
Reptile

Mammal

342/435

Outline

@ Inheritance

@ Polymorphism

© Multiple inheritance

Polywhat??77?

Poly-morphism

poly: many morphe: form/shape

Polywhat??77?

Poly-morphism

poly: many morphe: form/shape

Simple idea:

e Arrays cannot contain different data types
e A sick cow is almost like a cow

e Goal: handle sick cows as cows while preserving their specifics

Function overloading
cows-3.cpp

#include <iostream>
using namespace std;
class Cow {
public: Cow(int f=0){grass=f;}
void Speak () { cout << "Moo.\n"; }
void Eat() { if(grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";}
protected: int grass;
};
class SickCow : public Cow {
public: SickCow(int f=0,int m=0){grass=f; med=m;}
void Speak () { cout << "Ahem... Moo.\n"; }
void TakeMed() { if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";}

1
2
3
4
5
6
7
8
9

e e =
UAe W N RO

private: int med;
};
int main () {
Cow cl; SickCow c2(1); Cow *c3=&c2;
c1.Speak();cl.Eat();c2.Speak();c2.TakeMed() ;c3->Speak() ; //c3->TakelMed;
}

Overcoming the limitations

New keyword: virtual

e Virtual function in the base class
e Function can be redefined in derived class

e Preserves calling properties

Drawbacks:

Binding: connecting function call to function body

Early binding: compilation time

Late binding: runtime, depending on the type, more expensive

virtual implies late binding

Fixing the cows
cows-4.cpp

#include <iostream>
using namespace std;
class Cow {
public: Cow(int f=0){grass=f;}
virtual void Speak () { cout << "Moo.\n"; }
void Eat() { if(grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";}
protected: int grass;
};
class SickCow : public Cow {
public: SickCow(int f=0,int m=0){grass=f; med=m;}
void Speak () { cout << "Ahem... Moo.\n"; }
void TakeMed() { if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";}

1
2
3
4
5
6
7
8
9

e e =
UA W N RO

private: int med;
};
int main () {
Cow cl; SickCow c2(1); Cow *c3=&c2;
c1.Speak();cl.Eat();c2.Speak();c2.TakeMed() ;c3->Speak() ; //c3->Takeled;
}

Extending the idea

Applying the same idea to generalize the diagram:

|

Mammal Reptile Bird

A

/ Cage
TicketOffice

Animal

SickCow:
TakeMed

Extending the idea

Applying the same idea to generalize the diagram:

|

Mammal Reptile Bird

NN
Momkey | Swle U T
/ Cage
TicketOffice

SickCow:
TakeMed

Animal

Benefits:
e Feed all the animals at once

e Animals speak their own language when asked to speak

class Animal {
public:

virtual void Speak() = 0;

349/435

1
2
3
4
5
6
7
8
9

[i S
© © 0w N3 WN RO

Animals

animals.h

class Animal {
public:
virtual void Speak()
virtual void Eat() =
};
class Cow : public Animal {
public:
Cow(int £=0); virtual void Speak(); void Eat();
protected: int grass;
};
class SickCow : public Cow {
public:
SickCow(int £=0,int m=0); void Speak(); void TakeMed();
private: int med;
};
class Monkey : public Animal {
public:
Monkey(int £=0); void Speak(); void Eat();
protected: int banana;

}’

= 0;
0;

Animals

animals.cpp

#include <iostream>

#include "animals.h"

using namespace std;

Cow::Cow(int f) {grass=f;}

void Cow::Speak() { cout << "Moo.\n"; }

void Cow::Eat(){
if(grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";

}

SickCow: :SickCow(int f,int m) {grass=f; med=m;}

void SickCow::Speak() { cout << "Ahem... Moo.\n"; }

void SickCow: :TakeMed() {
if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";

}

Monkey: :Monkey (int f) {banana=f;}

void Monkey::Speak() { cout << "Hoo hoo hoo hoo\n";}

void Monkey::Eat() {
if (banana > 0) {banana--; cout << "Give me another banana!\n";}
else cout << "Who took my banana?\n";

}

1
2
3
4
5
6
7
8
9

e e e e =
U W N = O

#include <iostream>
#include <string>
#include "animals.h"
using namespace std;
class Employee {
public:
void setName(string n); string getName();
private:
string name;

1
2
3
4
5
6
7
8
®

[un
o

};
class Tamer : public Employee {
public: void Feed(Animal *a);
};
class Zoo {
public:
Zoo(int s);
~Zoo();
int getSize(); Tamer* getTamer(); Animal *getAnimal(int i);
private:
int size; Animal **a; Tamer *g;

I e R S
© © W N DU W N

};

[V
=

Z00.cpp

#include <iostream>
#include "zoo.h"
void Employee::setName(string n) { name=n; }
string Employee::getName() { return name; }
void Tamer::Feed(Animal *a) {a->Speak(); a->Eat();}
Zoo: :Zoo(int s) {
size=s; a=new Animal*[size]; g=new Tamer;
for(int i=0; i<size; i++) {
switch(i%4) {
case 0: a[il=new Cow; break; case 1: al[i]=new SickCow; break;
case 2: al[il=new Monkey;break; case 3: a[il=new Monkey(1);break;

}

1
2
3
4
5
6
7
8
9

e e =
W N = O

}

}

Zoo::~Zoo() {
for(int i=0; i<size; i++) delete al[il;
delete[] a; delete g;

}

int Zoo::getSize() { return size; };

Tamer* Zoo::getTamer() { return g; }

Animal *Zoo::getAnimal(int i) {return ali];}

I I
= O © 0 N O Utk

Benefits of polymorphism

ZOO-main.cpp

#include <tostream>
#include "zoo.h"
int main () {
Zoo z(10); z.getTamer()->setName("Mike");
cout << "Hi " << z.getTamer()->getName ()
<< ", please feed the animals.\n";
for(int i=0; i<z.getSize(); i++) {
cout << endl;
z.getTamer () ->Feed(z.getAnimal(i));
}
}

Benefits of polymorphism

Understanding the code:

e Explain the benefits of polymorphism

e Why is the Zoo destructor not empty?

e |s it possible to instantiate and Animal?

e Adapt the previous classes and main function to add:

Cages that can be locked and unlocked
A vet and more guards

A boss, who gives orders while other employees do the real
work (feed, give medication, open cages...)

Visitors who can watch the animals, get a fine if they feed the
animals...

If an animal escapes there is an emergency announcement and
the zoo closes

Outline

@ Inheritance

@ Polymorphism

© Multiple inheritance

Multiple inheritance

Simple idea: a class can inherit from multiple classes

Example.
Any sick animal should be put under medication:

e Not only cows can be sick
e Create a generic “sick class” that can be used by any animal
e A sick cow is a cow and is sick

e A sick cow inherits from sick and from cow

Multiple inheritance

|

Mammal Reptile Bird

| E——

N

SickCow MadCow

Animal

Sick:
TakeMed

class SickCow : public Cow, public Sick {

358/435

More cows

animals-m.h

class Animal {
public:
virtual void Speak() = 0; virtual void Eat() = 0;
};
class Sick {
public: void TakeMed();
protected: int med;
};
class Cow : public Animal {
public: Cow(int £=0); virtual void Speak(); void Eat();
protected: int grass;
};
class SickCow : public Cow, public Sick {
public: SickCow(int f=0,int m=0); void Speak();
};
class MadCow : public Cow {
public: MadCow(int £=0,int p=0); void Speak(); void TakePills();
protected: int pills;
};

1
2
3
4
5
6
7
8
©

e e e e e e =
© 0N OO s W N = O

More cows

animals-m.cpp

#include <iostream>
#include "animals_m.h"
using namespace std;
void Sick::TakeMed(){
if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";
}
Cow: :Cow(int f) {grass=f;}
void Cow::Speak() { cout << "Moo.\n"; }
void Cow::Eat(){
if(grass > 0) { grass-- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";
}
SickCow: :SickCow(int f,int m) {grass=f; med=m;}
void SickCow::Speak() { cout << "Ahem... Moo.\n"; }
MadCow: :MadCow(int £, int p) {grass=f; pills=p;}
void MadCow::Speak() { cout << "Woof\n";}
void MadCow: :TakePills() {
if (pills > 0) {pills--; cout << "Moof, that's better\n";}
else cout << "Woof woof woof!\n";

}

1
2
3
4
5
6
7
8
9

e e e e =
U W N = O

More cows

animals-main-m.cpp

#include <iostream>
#include "animals_m.h"
using namespace std;
int main () {
SickCow c1(1,1);
cl.Speak(); cl.Eat(); cl.TakeMed();
cl.Eat(); cl.TakeMed();
cout << endl;
MadCow c2(1,1);
c2.Speak(); c2.Eat(); c2.TakePills();
c2.Eat(); c2.TakePills();

1
2
3
4
5
6
7
8
9

= e
[N)

The diamond problem

Multiple inheritance can be tricky:

e A: Cows
e B: Sick cows

e C: Mad cows

Sick mad cows are in BN C

The diamond problem

P I

Mammal Reptile Bird

| e———

N

SickCow MadCow

\/

SickMadCow

Animal

The diamond problem

Human perspective Computer perspective
Cows Cows Cows

Mad Sick Mad Sick

COWS Cows COWS COWS

Sick mad cows Sick mad cows

The diamond problem

Human perspective Computer perspective
Cows Cows Cows
Mad Sick Mad Sick
cows cows cows cows
Sick mad cows Sick mad cows
Questions:

e Is Eat inherited from Cow through SickCow or MadCow?

e What happens if the variable grass is updated?

class Cow {...};
class SickCow : public virtual Cow {...};

class MadCow : public virtual Cow {...};
class SickMadCow : public SickCow, public MadCow {...};

365/435

class Cow {...};
class SickCow : public virtual Cow {...};

class MadCow : public virtual Cow {...};
class SickMadCow : public SickCow, public MadCow {...};

365/435

1
2
3
4
5
6
7
8
9

I I e T S
= O © 0 N O 0k W N = O

Sick mad cows

animals-d.h

class Animal {
public: virtual void Speak() = 0; virtual void Eat() = 0;
};
class Sick {
public: void TakeMed();
protected: int med;
};
class Cow : public Animal {
public: Cow(int £=0); virtual void Speak(); void Eat();
protected: int grass;
};
class SickCow : public virtual Cow, public Sick {
public: SickCow(int f=0,int m=0); void Speak();
};
class MadCow : public virtual Cow {
public: MadCow(int £=0,int p=0); void Speak(); void TakePills();
protected: int pills;
};
class SickMadCow : public SickCow, public MadCow {
public: SickMadCow(int £=0, int m=0, int p=0); void Speak();
};

1
2
3
4
5
6
7
8
9

I i S S
H O © 00 N O Uk W N = O

Sick mad cows

animals-d.cpp

#include <iostream>

#include "animals_d.h"

using namespace std;

void Sick::TakeMed() { if(med > 0) { med--; cout << "I feel better\n";}
else cout << "I'm dying\n";

}

Cow::Cow(int f) {grass=f;}

void Cow::Speak() { cout << "Moo.\n"; }

void Cow::Eat(){ if(grass > 0) { grass—- ; cout << "Thanks I'm full\n";}
else cout << "I'm hungry\n";

}

SickCow: :SickCow(int f,int m) {grass=f; med=m;}

void SickCow::Speak() { cout << "Ahem... Moo\n"; }

MadCow: :MadCow(int £, int p) {grass=f; pills=p;}

void MadCow::Speak() { cout << "Woof\n";}

void MadCow: :TakePills() {
if (pills > 0) {pills--; cout << "Moof, that's better\n";}
else cout << "Woof woof woof!\n";

}

SickMadCow: :SickMadCow(int f, int m, int p) {grass=f; med=m; pills=p;}

void SickMadCow::Speak() {cout << "Ahem... Woof\n";}

Sick mad cows

animals-main-d.cpp

#include <iostream>
#include "animals_d.h"
using namespace std;
int main () {
SickCow c1(1,1);
cl.Speak(); cl.Eat(); cl.TakeMed();
cl.Eat(); cl.TakeMed();
cout << endl;
MadCow c2(1,1);
c2.8peak(); c2.Eat(); c2.TakePills();
c2.Eat(); c2.TakePills();
cout << endl;
SickMadCow c3(1,1,1);
c3.Speak(); c3.Eat(); c3.TakePills(); c3.TakeMed();
c3.Eat(); c3.TakePills(); c3.TakeMed();
SickMadCow c4(1,1,0); Cow *cb=&c4;
c4.Speak(); c4.Eat(); c4.TakePills(); c4.TakeMed();
c5->Speak(); c5->Eat(); //c5->TakePills(); ch5->TakelMed();

1
2
3
4
5
6
7
8
9

s e e e =
© W N U e W N = O

Sick mad cows

Understanding the code:

e How is polymorphism used?

Describe the diamond problem

How was the problem overcome?

Draw a hierarchy diagram without the diamond problem

What is happening if line 18 (14.368) is uncommented? Why?

Project development

Process to organise a project:
@ Define what is needed or expected
® Express everything in terms of objects
© Define the relationships among the objects
@ Abstract new classes
@ Draw the hierarchy diagram
@ If there is any diamond, adjust the diagram
@ For each object define the methods
® For each object define the attributes

© Write the classes

Key points

What are the three main concepts of object oriented
programming?

Why using inheritance?
What is polymorphism?
What are the pros and cons of the keyword virtual?

What is the best way to solve the diamond problem?

«~ 7T

Chapter 15

Libraries and templates

372/435

Outline

@ Using external libraries

@ Writing templates

© Using the Standard Template Library

Libraries

Simple overview:
e Many libraries available to define all type of objects
e Using a library:
e Include header files
e Possibility to use the library namespace

e Reference the library at compilation time

Libraries

Simple overview:
e Many libraries available to define all type of objects
e Using a library:
e Include header files
e Possibility to use the library namespace

e Reference the library at compilation time

To use a library the compiler must know:

e Where the header files are located
e The namespace a function belongs to

e Where the machine code is located

The OpenGL library

Overview:

e Open Graphic Library (openGL)

C library for drawing

Cross platform
Multi platform Application Programming Interface (API)
API interacts with the GPU

Widely used in games, Computer Aided Design (CAD), flight
simulators. . .

The OpenGL library

Overview:

e Open Graphic Library (openGL)

C library for drawing

Cross platform
Multi platform Application Programming Interface (API)
API interacts with the GPU

Widely used in games, Computer Aided Design (CAD), flight
simulators. . .

Goal: wrap the C functions into classes to construct a home

Home
draw
Shape (x5)

zoom

in and out
paint

376/435

Figures specification

home/figures.h

#ifndef __FIGURES_H__
#define __FIGURES H _
class Point { public: double x,y; };
class Shape {
public: virtual void draw() = 0; virtual ~Shape();
protected: float r, g, b;
};
class Rectangle : public Shape {
public: Rectangle(Point pti={-.5,-.5}, Point pt2={.5, .5},
float r=0, float g=0, float b=0);
void draw();
private: Point pl,p2;
};
class Triangle : public Shape {
public: Triangle(Point ptl={-.5,-.5}, Point pt2={.5,-.5},
Point pt3={0,.5}, float r=0, float g=0, float b=0);
void draw();
private: Point pl,p2,p3;
};
#endif

1
2
3
4
5
6
7
8
9

T
O © W N TR W N = O

Figures implementation

home/figures.cpp

#include <GL/glut.h>
#include "figures.h"
Shape: : ~Shape () {}
Rectangle: :Rectangle(Point ptl, Point pt2,
float red, float green, float blue) {
pl=ptl; p2=pt2; r=red; g=green; b=blue;

void Rectangle::draw() {

glColor3f(r, g, b); glBegin(GL_QUADS);

glVertex2f(pl.x, pl.y); glVertex2f(p2.x, pl.y);

glVertex2f(p2.x, p2.y); glVertex2f(pl.x, p2.y); glEndQ);
}
Triangle::Triangle(Point ptl, Point pt2, Point pt3,

float red, float green, float blue) {
pl=ptl; p2=pt2; p3=pt3; r=red; g=green; b=blue;

1
2
3
4
5
6
7
8
9

e e =
U W N R O

void Triangle::draw() {
glColor3f(r, g, b); glBegin(GL_TRIANGLE_STRIP);
glVertex2f(pl.x, pl.y); glVertex2f(p2.x, p2.y); glVertex2f(p3.x, p3.y);
glEnd () ;

}

Home specification

home/home.h

#ifndef __HOME H.__
#define __HOME H__
#include "figures.h"
class Home {
public:
Point p; double w, h, o;
Home (Point pt1={0,-.25}, double width=1,
double height=1.3, double owidth=.175);
~Home ()
void draw();
void zoom(double *width,double *height,double *owidth);
private:
Shape *sh[5];
void zoomout(double *width,double *height,double *owidth);
void zoomin(double *width,double *height,double *owidth);
void paint(float *r, float *g, float *b);
};
#endif

1
2
3
4
5
6
7
8
9

e e e e =
w0 N e W N = O

1
2
3
4
5
6
7
8
9

e e =
N Ok W N = O

Home implementation (part 1)

home/home-partl.cpp

#include <ctime>

#include <cstdlib>

#include "home.h"

Home: :Home (Point ptl, double width, double height, double owidth){

}

float r, g, b; Point pl, p2, p3;

p=ptl; w=width; h=height; o=owidth; srand(time(0));
pl={p.x-w/2,p.y-w/2}; p2={p.x+w/2,p.y+w/2};

paint (&r,&g,&b) ; sh[0]=new Rectangle(pl,p2,r,g,b);
pl={p.x-o,p.y-w/2}; p2={p.x+o,p.y};

paint (&r,&g,&b); shl[ll=new Rectangle(pl,p2,r,g,b);
pl={p.x-2%0,p.y+o}; p2={p.x-o0,p.y+2%0};

paint (&r,&g,&b); sh[2]=new Rectangle(pl,p2,r,g,b);
pl={p.x+w/2-2%0,p.y+o}; p2={p.x+w/2-0,p.y+2%0};
paint (&r,&g,&b) ; sh[3]=new Rectangle(pl,p2,r,g,b);
pl={p.x,p.y+h-w/2}; p2={p.x-w/2,p.y+w/2}; p3={p.x+w/2,p.y+w/2};
paint (&r,&g,&b) ; sh[4]=new Triangle(pl,p2,p3,r,g,b);

Home: :~Home () { for(int i=0;i<5;i++) delete sh[il; }

1
2
3
4
5
6
7
8
9

=
N = O

Home implementation (part 2)
home/home-part2.cpp

void Home::draw() {for(int i=0;i<5;i++) sh[i]l->draw();}

void Home::zoom(double *width, double *height, double *owidth){
int static i=0;
if (h>=0.1 && i==0) zoomout(width, height, owidth);
else if (h<=2) { i=1; zoomin(width, height, owidth); }
else i=0;

}

void Home: :zoomout(double *width, double *height, double *owidth){
h/=1.01; *height=h; w/=1.01; *width=w; o/=1.01; *owidth=o;

}

void Home::zoomin(double *width, double *height, double *owidth){
h*=1.01; *height=h; wx=1.01; *width=w; o*=1.01; *owidth=o;

}

void Home::paint(float *r, float *g, float *b) {
*r=(float)rand () /RAND_MAX; *g=(float)rand()/RAND_MAX;
*xb=(float)rand () /RAND_MAX;

}

Home instantiation

home/main.cpp

#include <GL/glut.h>

#include "home.h"

void TimeStep(int n) {
glutTimerFunc(25, TimeStep, 0); glutPostRedisplay();

}

void glDraw() {
double static width=1, height=1.5, owidth=.175;
Home zh({0,-.25},width,height,owidth);
zh.zoom(&width, &height, &owidth);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
zh.draw(); glutSwapBuffers(); glFlush();

}

int main (int argc, char xargv([]) {
glutInit(&argc, argv);
// glutInitWindowSize (500, 500);
glutInitDisplayMode (GLUT_RGB | GLUT_SINGLE);
glutCreateWindow("Home sweet home");
glClearColor(1.0, 1.0, 1.0, 0.0); glClear (GL_COLOR_BUFFER_BIT);
glutDisplayFunc(glDraw); glutTimerFunc(25, TimeStep, 0);
glutMainLoop() ;

1
2
3
4
5
6
7
8
9

I I e R
H O © 00 N O Uk W N = O

Basics

Basic process with OpenGL:
@ Initialise the library: glutInit(&argc, argv);

@ Initialise the display: glutInitDisplay(GLUT_RGB|GLUT_SINGLE);

© Create window: glutCreateWindow(windowname) ;

O Set the clear color: glClearColor(r,g,b) ;(r.g,b € [0,1])
@ Clear the screen: glClear (GL_COLOR_BUFFER_BIT) ;

® Register display callback function: glutDisplayFunc(drawfct);
@ Redraw the screen: recursive call to a timer function
@ Start the loop: glutMainLoop() ;

© Draw the objects

Remarks

Understanding the code:

Why is the static keyword used in both the glDraw and
zoom functions?

Why were pointers used in he zoom, zoomin and zoomout
functions?

How were inheritance and polymorphism used?

Comment the choices of public or private attributes and
methods

How is the keyword #ifndef used?

sh § g++ -std=c++11 -o home main.cpp home.cpp\

figures.cpp -1lglut -1GL
sh ¢ ./home

385/435

sh § g++ -std=c++11 -o home main.cpp home.cpp\
figures.cpp -1lglut -1GL
sh § ./home

385/435

Makefile

home/Makefile

CC = g++ # compiler

CFLAGS = -std=c++11 # compiler options

LIBS = -1lglut -1GL # libraries to use

SRCS = main.cpp home.cpp figures.cpp

MAIN = home

0BJS = $(SRCS:.cpp=.0)

.PHONY: clean # target not corresponding to real files

all: $(MAIN) # target all constructs the home
Q@echo Home successfully constructed

$(MAIN) :
$(CC) $(CFLAGS) -o $(MAIN) $(SRCS) $(LIBS)

.cpp.o: # for each .cpp build a corresponding .o file
$(CC) $(CFLAGS) -c $< -o $@

clean:
$(RM) *.o0 *~ $(MAIN)

1
2
3
4
5
6
7
8
9

e =
w N = O

Outline

@ Using external libraries

@ Writing templates

© Using the Standard Template Library

Classes

Limitations of inheritance and polymorphism:

e High level classes (boat, company, car...)
e Low level classes used to define high level ones

e Need to apply a function to more than one type: function
overloading

Problem: duplicated code, more complex to debug. . .

Defining a template

A templates is a “special class” where the data type is a parameter

Defining a template

A templates is a “special class” where the data type is a parameter

complex.h

#include <tostream>
using namespace std;
template<class TYPE>
class Complex {
public:
Complex(D){ R = I = (TYPE)O; }
Complex(TYPE real, TYPE img) {R=real;I=img;}
void PrintComplex() {cout<<R<<'+'<<I<<"i\n";}
private:
TYPE R, I;
};

complex<float> ci;
complex<int> c2;

typedef complex<double> dcplx;
dcplx c3;

390/435

complex<float> ci;
complex<int> c2;

typedef complex<double> dcplx;
dcplx c3;

390/435

Solution

complex.cpp

#include "complezx.h"
typedef Complex<char> CComplex ;
int main () {
Complex<double> a(3.123,4.9876);
a.PrintComplex();

Complex<int> b;

b = Complex<int>(3,4);
b.PrintComplex();
CComplex c('a','d');
c.PrintComplex();

A bit of history

A few dates:
e 1983: C++
e 1994: templates accepted in C++

e 2011: many fixes/improvements on templates

Conclusion templates:

e Are very powerful, complex and new

Are not always handled nicely

Might display long and unclear error messages

Do not always benefit from optimizations

Require much work from the compiler

Basics on STL

C++ is shipped with a set of temples:
e Standard Template Library (STL)

e STL goals: abstractness, generic programming, no loss of
efficiency

e Basic idea: use templates to achieve compile time
polymorphism
e Components:
e Containers
o |terators
e Algorithms

e Functional

Outline

@ Using external libraries

@ Writing templates

© Using the Standard Template Library

Sequence containers

Common sequence containers:

e Vector: automatically resizes, fast to access any element and
to add/remove elements at the end

e Deque: vector with reasonably fast insertion deletion at
beginning and end, potential issues with the iterator

e List: slow lookup, once found very fast to add/remove
elements

Sequence containers

Common sequence containers:

e Vector: automatically resizes, fast to access any element and
to add/remove elements at the end

e Deque: vector with reasonably fast insertion deletion at
beginning and end, potential issues with the iterator

e List: slow lookup, once found very fast to add/remove
elements

Other available containers: set, multiset, map, multimap, bitset,
valarray, unordered_ { set,multiset,map,multimap }

1 #include <vector>

2 vector<int> vint;
3 vector<float> vfloat;

396/435

Vectors

vect.cpp

#include <iostream>

#include <vector>

using namespace std;

int main () {
vector<int> v1(4,100); vector<int> v2;
vector<int>::iterator it;
v1[3]=5;
cout << vi[3] << " " << v1[0] << endl;
v2.push_back(2); v2.push_back(8); v2.push_back(18);
cout << v2[0] << " " << v2[1] << " " << y2[2] << endl;
v2.swap(vl);
cout << v2[1] << " " << v1[1] << " " << vl.size() << endl;
vl.erase(vl.begin()+1,vl.begin()+3);
cout << v1[0] << " " << v1[1] << " " << vi.size() << endl;
v1l.pop_back();
cout << v1[0] << " " << v1[1] << " " << vl.size() << endl;
for(it=v2.begin(); it!=v2.end();it++) cout << *it << endl;

1
2
3
4
5
6
7
8
9

e e e e e =
w N O Ugse W N = O

Container adaptors

Common containers adaptors:

e Queue: First In First Out (FIFO) queue — list, deque
Main methods: size, front/back (access next/last
element), push (insert element) and pop (remove next
element)

e Priority queue: elements must support comparison
(determining priority) — vector, deque

e Stack: Last In First Out (LIFO) stack — vector, list, deque
Main methods: size, top (access next element), push and
pop (remove top element)

Example

queue.cpp

#include <tostream>
#include <queue>
using namespace std;
int main () {
int i, j=0;
queue <int> line;
for(i=0;i<200;i++) line.push (i+1);
while(line.empty() == 0) {
cout << line.size () << " persons in the line\n"
<< "first in the line: " << line.front() << endl
<< "last in the line: " << line.back() << endl;
line.pop O}
if (j++43==0) {
line.push (++i);
cout << '"new in the line: " << line.back() <<endl;

1
2
3
4
5
6
7
8
9

e e e =
ok W N = O

}
}
}

=R e
o N O

. . P ; A\
i=0;i<vct.size();i++) { for(it=vct.begin();
forOitvet.s it !=vct.end();++it) {

400/435

Example

iterator.cpp

#include <iostream>

#include <set>

using namespace std;

int main() {
set<int> s;
s.insert(7);s.insert(2);s.insert(-6);
s.insert(8);s.insert(1);s.insert(-4);
set<int>::const_iterator it;
for(it = s.begin(); it != s.end(); ++it) A

cout << *xjit << " ",

}

cout << endl;

Algorithms templates

Common algorithms implemented in templates:

e Manipulate data stored in the containers

e Mainly targeting range of elements

e Many “high low-level” functions

e Sort

Shuffle

Find with conditions

Partition

Count

In a given range returns how many element are equal to some value

[

2
3
4
5
6
7
8
9

e =
w N = O

count.cpp

#include
#include
#include
#include

<iostream>
<algorithm>
<vector>
<string>

using namespace std;
int main () {
string colors[8] = {"red","blue","yellow","black",
"green","red","green","red"};
vector<string> colorvect(colors, colors+3);
int mnbcolors = count (colorvect.begin(),
colorvect.end(), "red");
cout << '"red appears " << nbcolors << " times.\n";

Find
In a given range returns an iterator to the first element that is
equal to some value or the last element in the range if no match is
found (use find with purple in the following code)

find.cpp

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

using namespace std;

int main () {
string colors[8] = {"red","blue","yellow","black",

"green","red","green","red"};

vector<string> colorvect(colors, colors+3);
vector<string>::iterator it;
it=find(colorvect.begin(), colorvect.end(), "blue");
++it;
cout << "following blue is " << *it << endl;

1
2
3
4
5
6
7
8
9

N e =
B W N = O

Remove consecutive duplicate elements

uniquel.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool cmp(string s1, string s2) { return(sl.compare(s2)==0);}
int main () {
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+8);
vector<string>::iterator it;
it=unique(colorvect.begin(), colorvect.end(),cmp);
colorvect.resize(distance(colorvect.begin(),it));
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << *it;
cout << endl;

1
2
3
4
5
6
7
8
9

e T e e =
N O A W N = O

Sort elements in ascending order

sort.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool cmp(string s1, string s2) { return(sl.compare(s2)<0);}
int main () {
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+3);
vector<string>::iterator it;
sort(colorvect.begin(), colorvect.end(),cmp);
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << *it;
cout << endl;

1
2
3
4
5
6
7
8
9

e e e =
D A W N = O

Problem

Remove all duplicate elements from the color vector.

Solution

unique2.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool cmpl(string s1, string s2) {return(sl.compare(s2)<0);}
bool cmp2(string s1, string s2) {return(sil.compare(s2)==0);}
int main () {
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+8);
vector<string>::iterator it;
sort(colorvect.begin(), colorvect.end(),cmpl);
it=unique(colorvect.begin(), colorvect.end(),cmp2);
colorvect.resize(distance(colorvect.begin(),it));
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << *it;
cout << endl;

Reverse

Reverse the order of the elements
reverse.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
int main () {
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+8);
vector<string>::iterator it;
reverse(colorvect.begin(), colorvect.end());
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << xit;
cout << endl;

1
2
3
4
5
6
7
8
9

e e e =
ok W N = O

Any other possible strategy?

Remove

Remove elements and returns an iterator to the new end
remove.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool bstart(string s) { return(s[0]!='b'); }
int main) {
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+3);
vector<string>::iterator it;
it=remove_if (colorvect.begin(),colorvect.end() ,bstart);
colorvect.resize(distance(colorvect.begin(),it));
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << xit;
cout << endl;

1
2
3
4
5
6
7
8
9

e e e e =
N o ook W N = O

Random__shuffle
Randomly rearrange elements

random.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
int main () {
srand (unsigned(time(0)));
string colors[8] = {"red","blue","yellow","black",
"green","green","red","red"};
vector<string> colorvect(colors, colors+3);
vector<string>::iterator it;
random_shuffle(colorvect.begin(),colorvect.end());
for(it=colorvect.begin(); it!=colorvect.end();++it)
cout << ' ' << *it;
cout << endl;

1
2
3
4
5
6
7
8
9

e e e =
D A W N = O

Max and min

Returns min and max of two elements or the min and max in a list

minmax.cpp

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
bool cmp(string s1, string s2) {return(sl.compare(s2)<0);}
int main () {
srand (unsigned(time(0)));
auto mm=minmax({"red","blue","yellow","black"},cmp);
cout << mm.first << ' ' << mm.second;
cout << endl;

1
2
3
4
5
6
7
8
9

=
N = O

How to use external libraries?
How to write a Makefile?
What is the Standard Template Library?

Why using STL?

Key points

Chapter 16
Beyond MATLAB, C, and C++

Outline

@ Improving the coding style

@ A few more things on C and C++

©® What's next?

Layer programming

Clean coding strategy:

e Split the code into functions

Organise the functions in different files

Functions are organised by layers

Functions of lower layers do not call functions of higher layers

A function can only call functions of same or lower levels

Layer programming

Example.
In the implementation of the home:

e Lowest layer: definition of the figures (points, rectangle, and
triangle)

e Middle layer: definition of the home (home and actions on the
home)

e Top layer: instantiation of the home (more actions such as
construction of a compound)

Layer programming

OO U ks WN -

Makefile

Makefile

CCC = g++

CCFLAGS = -std=c++11 -Wall -Wextra -Werror -pedantic
LIBS = -lglut -1GL

LLIBS = -L. -lhome -1fig
LFIG_SRC = figures.cpp

LFIG_0BJ = $(LFIG_SRC:.cpp=.0)
LFIG = libfig.a

LHOME_SRC = home.cpp

LHOME_OBJ = $(LHOME_SRC:.cpp=.0)
LHOME = libhome.a

MAIN_SRC = main.cpp

MAIN = home

.PHONY: clean hlibs

all: $(LFIG_OBJ) $(LHOME_OBJ) hlibs $(MAIN)
Q@echo Home successfully constructed

$(MAIN) : $(MAIN_SRC)

$(CCC) $(CCFLAGS) -o $(MAIN) $(MAIN_SRC) $(LIBS) $(LLIBS)
.cpp.o:

$(CCC) $(CCFLAGS) -c $< -o $@

hlibs :
ar rcs $(LFIG) $(LFIG_OBJ); ar rcs $(LHOME) $(LHOME_OBJ)

clean:
$(RM) *.o *.a *~ $(MAIN)

sh § gcc -Wall -Wextra -Werror -pedantic file.c

sh § g++ -Wall -Wextra -Werror -pedantic file.cpp

420/435

Outline

@ Improving the coding style

@ A few more things on C and C++

©® What's next?

1 vector<T>::const_iterator

422/435

int a=0, b=1; const int *pl; int * const p2=&a;
pl=&a; cout << #*pl << #*p2 << endl;

pl=&b; *p2=b; //p2=&b; *pl=b;
cout << *pl << #p2 << endl;

423/435

References

Basics on references:

e Alias for another variable
e Changes on a reference are applied to the original variable
e Similar to a pointer that is automatically dereferenced

e Syntax: int &a=3

Remarks:

o Reference variable must be initialised

e The variable it refers to cannot be changed

References

ref.cpp

#include <iostream>
using namespace std;
int squareO(int x) {return x*x;}
void squarel(int x, int& res) { res=x*x; }
//inté square2a(int z) { int b=z*z; return b; F
int& square2b(int x) { int b=x*x; int &res=b; return res; }
int& square2c(int x) { static int b=x#*x; return b; }
int main () {
int a=2;
cout << squareO(a) << ' ' << a << endl;
squarel(a,a); cout << a << endl;
cout << square2b(a) << endl;
cout << square2c(a) << endl;

1
2
3
4
5
6
7
8
9

e =
B W N = O

The this pointer
The this keyword:

e Address of the object on which the member function is called

e Mainly used for disambiguation

boat.cpp

#include <iostream>
using namespace std;
class Boat {
public:
Boat(string name, int tonnage, bool IsDocked) {
this->name=name; this->tonnage=tonnage; this->IsDocked=IsDocked;
}
void dock() { IsDocked=1; cout<<"Docked!\n"; }
void undock() { IsDocked=0; cout<<"Undocked!\n"; }
private: bool IsDocked; string name; int tonnage;
};
int main () {
Boat b("abc",1234,1); b.undock();
}

1
2
3
4
5
6
7
8
9

=R
N = O

-
S

Pointer to function
Similar to pointer to variables:

e Variable storing the address of a function
e Useful to give a function as argument to another function

o Useful for callback functions (e.g. GUI)

fctptr.c

#include <stdio.h>
#include <string.h>

int gm(char *n) {
printf ("good morning %s\n",n);
return strlen(n);
}
int main () {
int (*gm_ptr) (char *)=gm;
printf ("%d\n", (xgm_ptr) ("john"));
}

1
2
3
4
5
6
7
8
9

e e e =
N o Ok W N = O

The enum and union

enum-union.c

#include <stdio.h>
typedef struct _activity {
enum { BOOK, MOVIE, SPORT } type;
union {
int pages;
double length;
int freq;
} prop;
} activity;
int main() {
activity al[5];
al[0] .type=B0O0K; al[0].prop.pages=192;
al[1].type=SPORT; all].prop.freq=4;
a[2] . type=MOVIE; al[2].prop.pages=123;
al[2] .prop.length=92.5;
printf("%f",a[2] .prop.length);

keywords

The argc and *argv[] parameters

arg.c

#include <stdio.h>
int main (int argc, char *argv[]) {
printf ("program: %s\n",argv[0]);

if (arge > 1) {
for (int i=1; i<argc; i++)
printf ("argv[/%d] = %s\n", i, argv[i]);
}
else printf("no argument provided\n");
return O;

sh § gcc -E file.c

sh $§ gcc -c file.c

sh § gcc file.c

430/435

Outline

@ Improving the coding style

@ A few more things on C and C++

© What's next?

Present

o MATLAB:

e Testing new algorithms

e Getting quick results

o C:

e Lower level
e More complex, flexible

e Faster, less base functions

o C++:

e New programming strategy
e Higher level

e Convenient for big projects

Future

Important points that remain to be considered:

e More to learn on programming

Languages of interest: C, Java, SQL, C++, PHP, CSS

Other useful languages: Python, Perl, Ruby

Designing a software: who is going to use it, where, how?

More details on how computers are working (data structures,
optimisations. ..) — improve efficiency

Key points

Many things left to learn

Before coding write an algorithm

No better way to learn than coding

Don't reinvent the wheel: use libraries

Each language has its own strengths, use them

Extend your knowledge by building on what you already know

Thank you!
Enjoy the Summer break. ..

	Course information
	Logistics
	Evaluations
	Resources

	Computers and Programming Languages
	A brief history of computing
	Understanding Computers
	Understanding Programming

	Introduction to MATLAB
	Programming in sciences
	Running MATLAB
	Arrays and matrices

	Control statements
	Conditional expressions
	Loops
	Advanced usage

	Functions and recursion
	Basics on functions
	Common MATLAB functions
	Recursion

	Plotting in MATLAB
	2D plotting
	3D plotting
	Curve fitting

	Data types and structures
	Data types
	Example of application
	More data types

	Introduction to C
	Basics on C
	From C to machine code
	Functions and libraries

	Data types in C
	Basics on data types
	More on data types
	Beyond data types

	Syntax and control statements
	General syntax
	Conditional statements
	Loops

	Arrays and pointers
	Arrays
	Pointers
	Pointers and arrays

	Algorithm and efficiency
	Algorithms
	Standard library
	A few final examples

	Introduction to C++
	Before starting with C++
	C and C++
	C++ syntax

	Object and class
	Basic concepts
	Writing and implementing a class
	Dealing with objects

	Inheritance and polymorphism
	Inheritance
	Polymorphism
	Multiple inheritance

	Libraries and templates
	Using external libraries
	Writing templates
	Using the Standard Template Library

	Beyond MATLAB, C, and C++
	Improving the coding style
	A few more things on C and C++
	What's next?

