

Vm311: Strength of Materials Fall 2016

••交大密西根学院•

UM-SITU Joint Institute

Course Pre/Co-requisites: Vm211 Introduction to Solid Mechanics, Vv256 Applied Calculus IV

Reference Textbooks [no textbook required]:

[1] Boresi. Schmidt, Advanced Mechanics of Materials, 6th ed., Wiley, 2003

[2] Barber, Intermediate Mechanics of Materials, 2nd ed., Springer, 2011

[3] Gere & Timoshenko, Mechanics of Materials, Krieger Pub Co; 3rd edition (June 1, 1983)

Lecture Time and Locations:

Tuesday: 14:00-15:40, F105 (东下院) Thursday: 14:00-15:40, F-105 (东下院)

Instructor:

Prof. Roberto Dugnani E-mail: roberto.dugnani@sjtu.edu.cn Office: E203, JI building Office Hours: Tuesday and Thursday 16:00-17:30 Office hours also available **by appointment** (please e-mail to set-up an appointment).

Teaching Assistant:

Qingjie Qi (齐庆杰) Email: <u>qiqingjie@sjtu.edu.cn</u> Office hours: 18:00-20:00 every Thursday, e-reading room, JI Building

Homework problems:

Students must complete all assignments. Late assignments will be graded with a **10% reduction in grade for each day** after the due date. Homework should show evidence of work, homework problems with only an answer will not be accepted. Partial credit will be given only for homework and calculations meeting acceptable standards.

Grading Scheme

Homework and Projects: 22% Quizzes: 3% Midterm Examination: 50% (25% each) Final Examination: 25%

Academic Integrity:

The learning derived from a course is based on student integrity and faculty support of a just learning environment. The faculties strive to enforce the policy and are open to any questions and discussion from the students. In this course you may consult fellow students for discussion but you are responsible for the originality of all your submitted work.

Course Objectives

Encourage independent thinking Develop a deeper understanding of the basic principles in mechanics of materials Promote economic thinking to obtain first-order solutions of complex problems Among the specific topic covered:

- Energy methods;
- Buckling of columns, including approximate methods;

UM-SJTU Joint Institute

- Bending of beams of asymmetrical cross-section;
- Shear center and torsion of thin-walled sections;
- Membrane stresses in axisymmetric shells;
- Elastic-plastic bending and torsion;
- Axisymmetric bending of circular plates

Week	Торіс
1 – Sep	Introduction and review of basic concept
2 – Sep	Bending of beams of asymmetrical cross-section
3 – Oct	Elastic-plastic bending/break
4 – Oct	Elastic-plastic torsion
5 – Oct	Energy Methods
6 – Oct	Midterm 1
7 – Nov	Rayleigh-Ritz method
8 – Nov	Castigliano's Theorems/ Introduction to FEA
9 – Nov	Midterm 2
10 – Nov	Maxwell Reciprocal theorem
11 – Nov	Buckling of columns
12 – Dec	Shear center and torsion of thin-walled sections
13 - Dec	FINAL EXAM

