

Course: Advanced Mechanics of Composite Materials - VM 518

Class Location: CRQ106

Class Times: Monday/Wednesday 12:10-13:50PM

(Optional) Book 1: Advanced Composite Materials by Stephen Swanson

ISBN: 978-0024185549

(Optional) Book 2: Mechanics of Composite Materials (Second Edition) by Robert M. Jones

**ISBN:** 978-1560327127

**Instructor: Dr. Shane Johnson** 

Telephone: ...

**E-Mail:** shane.johnson@sjtu.edu.cn

Office: JI Building, Room 506
Office Hours: Open Door Policy

Teaching Assistants: Zeeshan Qaiser Email Contact: zeeshan@sjtu.edu.cn

Office Hours: By Appointment

## **Course Description**

Prerequisite: Vm211

Mechanics of composite solids with an emphasis on the derivation of macroscopic constitutive laws based on the microstructure. Homogenization methods are introduced, and the effective stiffness properties and failure mechanics and theories of composites are developed. Classical laminated plate theory is used for the design and analysis of plates in bending, tension, compression, and in a humid environment. Composite manufacturing and fabrication techniques are introduced.

## **Grading:**

| Item                  | Percent of Grade |
|-----------------------|------------------|
| Homework              | 35%              |
| Exam 1                | 20%              |
| Final Project         | 45%              |
| (1. Fabrication of    |                  |
| laminate 5%,          |                  |
| Charazterization      |                  |
| report 10%, Final     |                  |
| Project delivery 30%) |                  |



## **Grading System:**

| 96-100 | A+ | 67-69    | С  |
|--------|----|----------|----|
| 90- 95 | Α  | 64-66    | C- |
| 85- 89 | A- | 60-63    | D  |
| 80- 84 | B+ | below 60 | F  |
| 75- 79 | В  |          |    |
| 70- 74 | B- |          |    |

## **Classroom Policies**

### **Expectations**

Bring your book, calculator, notes, and an open mind to class every day. Class participation is encouraged, and extra points given for participation will be added directly to your exam score.

### Make up exams

No make up quizzes or exams will be given except in cases of emergency.

#### **Class Attendance**

Class attendance will be taken randomly. Missing 2 random class attendance checks will result in a 5% overall VM518 grade deduction. Missing more attendance checks will result in an additional 5% grade deduction per class.

### **Dishonesty**

Any form of dishonesty or falsehood related to the general conduct of the class (exams, homework, project, quizzes, etc.) will be considered a major offense and will be brought before the Honor Council for appropriate action.

### **Cellphones and Texting**

Cellphones must be turned off or be in the silent mode during class hours. Cellphone operation (including reading or sending text messages) during class hours is not allowed and will be considered as cheating during exams.

## Laptops

Laptops in class must be used for the class! Do not use them to chat, play games or other nonclass activities during class. Violation will result in a documented class absence. See attendance policy for details.

### **Homework**

Homework must be turned in by the posted due date. Each day late will result in 10% reduction in the homework score. This means that you get a zero for the homework assignment after 10 days late.



# Tentative Course Schedule:

| 1  | 9/10/2017   | Syllabus, Grading, Composites Intro                                    |
|----|-------------|------------------------------------------------------------------------|
| 2  | 9/12/2017   | Rule of Mixtures and Manufacturing Intro                               |
| 3  | 9/17/2017   | Bernoulli-Euler Composite Beams and Laminates                          |
| 4  | 9/19/2017   | Stiffness Matrix Anisotropic Materials                                 |
| 5  | 9/26/2017   | Composite Fabrication in Lab                                           |
| 6  | 9/27/2017   | Stiffness Matrix Anisotropic Materials in Class, Composite Preparation |
| 7  | 10/8/2017   | Composite Laminate Tensile Testing in Lab                              |
| 8  | 10/10/2017  | Classical Lamination Theory + w/Matlab                                 |
| 9  | 10/15/2017  | Failure Mechanisms and Theories, Final Course Project Given            |
| 10 | 10/17/2017  | Abaqus Element/Beam Isotropic Tutorial                                 |
| 11 | 10/22/2017  | Abaqus Nonlinear Composite with Failure Tutorial                       |
| 12 | 10/24/2017  | Damage: Delamination and Matrix Cracking                               |
| 13 | 10/29/2017  | Laminated Beams                                                        |
| 14 | 10/31/2017  | Hygrothermal Behavior of Composites                                    |
| 15 | 11/5/2017   | Course Project Presentations                                           |
| 16 | 11/7/2017   | Design Problems [Examples]                                             |
| 17 | 11/12/2017  | Non-destructive Evaluation of Composite Structures                     |
| 18 | 11/14/2017  | Midterm Exam                                                           |
| 19 | 11/19/2017  | Advanced Composite Manufacturing                                       |
| 20 | 11/21/2017  | Reconfigurable Moulds, Custom Composite Manufacturing                  |
| 21 | 11/26/2017  | Course Project Review                                                  |
| 22 | 11/28/2017  | Micromechanics                                                         |
| 23 | 12/3/2017   | Micromechanics                                                         |
| 24 | 12/5/2017   | Course Summary                                                         |
| 25 | 12/TBD/2017 | Final Project Demonstration                                            |