

Course Syllabus Vm524 Turbulence 2018 Fall

Course Description:

A graduate course listed in SJTU's Honors Program, aiming to offer the SJTU graduate students an advanced and high-quality course to know the fundamentals of turbulence.

Instructor:

Name: Lipo Wang Email: lipo.wang@sjtu.edu.cn Phone: 15900923960 Office: Room JI Building 524 Office hour: working time

Textbook (Author, Book Title, Publisher, Publication Year, ISBN):

Recommended reference books:

1. A First Course in Turbulence, H. Tennekes and J.L. Lumley, MIT 1972

2. Turbulent Flows, S. Pope, Cambridge (2000)

3. other references: Turbulence (U. Frish), Turbulence (C. Bailly & G. Comte-Bellot),

notes for turbulence modeling

Course Prerequisites: Fluid mechanics

Course Website: N/A

Grading Policy (Assignments %, Project, Exams, etc.):

Homework (25% in total)

One medium-term exam (30%)

One topic research report (10% in total)

One final oral exam (grading weighting factor: 35%)

Honor Code Policy:

It is very necessary to show up in the class. Homework assignments need to finish independently and submit on time. Frequent discussions and exchanges with the instructor are strongly encouraged. To make a fair judgment of learning, strict rules related to homework assignments and exams need to be formulated without exception. Any honor code violation behavior (e.g. plagiarism) must be recorded with corresponding penalty.

Teaching Schedule:

中国 上海闵行区东川路 800 号 邮编 200240 Tel: +86-21-34206045 800 Dong Chuan Road, Shanghai, 200240, PRC http://umji.sjtu.edu.cn

Week	NO.	Date	lectures and Exams	Comments
			The nature of turbulence:	
1	1		turbulence physics	
	2		; phenomenological description of turbulence	
2			Methods of analysis: dimensional analysis, local	
	3		invariance	
	4		, Reynolds decomposition, emsamble average	
3	5		Kinetic description of gases	
	6		mathematical description, Karman-Harwarth equation	
4	7		National holiday	
	8		National holiday	
5	9		Energy cascade: scales in turbulence	
			Flow dynamics and vorticity dynamics based on	
	10		governing equations	
6	9		Free shear turbulence: governing equiations	
	10		Modeling ideas, self-similarity	
7	11		Free shear turbulence: scaling relation	
	12		Results and analysis	
8	13		Midterm exam	
	14		Wall shear turbulence: governing equation	
9	15		Wall shear turbulence: mean profiles, Reynolds stress	
	16	う お	Wall shear turbulence: length scales	
			Wall shear turbulence: turbulent boundary layer	
10	17		structure and the thickness evolution	
50	18		Passive scalar transport in turbulence	
11			Introduction of turbulence models and DNS (direct	
	19		numerical simulation): DNS	
			Introduction of turbulence models and DNS (direct	
	20		numerical simulation): large eddy simulation	
12			Introduction of turbulence models and DNS (direct	
	21	Mage	numerical simulation): dynamic sub-grid models	
	22		Specific topic: intermittency: theory and models	
13	25		Course review	
	26		Final exam	

800 Dong Chuan Road, Shanghai, 200240, PRC http://umji.sjtu.edu.cn