Vv256 Honors Calculus IV

1 Introduction

1.1 Course Profile

• Instructor:

Jing Liu

• Lectures:

Monday	(16:00 - 17:40)	in F-315
Tuesday	(10:00 - 11:40)	in F-315
Thursday	(10:00 - 11.40)	in F-215

Odd weeks only

• Office Hours:

Monday (10:10 – 15:30) in JI-Building 204 or by appointment.

• Email:

stephen.liu@sjtu.edu.cn

• Teaching Assistant/s:

See Canvas for his/her contact information

1.1.1 Grading Policy

- Assignment:
 - 25% Assignments will be given in the form of problem sets, and may require extra reading and the use of Matlab. Assignments will have bonus questions. Solutions to the bonus questions will not be provided. Bonus points obtained from an assignment can only be credited to that assignment. Assignments need to be submitted to the correct Vv256 pigeon-hole according to your student I.D. in the JIbuilding before the beginning of class on the day indicated on the assignment. Assignments also need to be submitted online through Canvas. Please plan your time accordingly, late assignment will be severely penalised.
- Exam:

75%	There will be	Midterm I	Midterm II	Final
	three exams:	25%	$25 \ \%$	25~%

- For this course, the grade will be curved to achieve a median grade of "B⁺".
- Further 1% bonus may be given for "class participation", or demonstrating extraordinary effort in learning when 1% is all you needed to have a better grade. This bonus cannot be used to obtain "A⁺".

1.1.2 Textbook and Syllabus

• Textbook:

	Elementary Differential Equations and I William E.Boyce & Richard C.DiF	Boundary Value Problems Prima (10th edition)	
Week	Topics	Textbook Sections	
1	Introduction	Ch-1;	
	Linear and Separable	$Ch-2.1 \sim 2.4;$	
	Autonomous	Ch-2.5;	
2	Exact	Ch-2.6;	
	Constant coefficients	Ch-3.1;	
3	Abel's theorem	$Ch-3.2 \sim 3.4;$	
	Nonhomogeneous $Ch-3.5 \sim 3.6;$		
	Vibrations (optional)	Ch $-3.7 \sim 3.8;$	
4	Mid-Autumn Festival and National day		
	Midterm Exam I		
5	Higher order Linear Equations	Ch-4;	
	Series Solutions	Ch-5.1	
C	Ordinary	$Ch-5.2 \sim 5.3;$	
0	Regular singular	$\mathrm{Ch-}5.4\sim5.6$	
7	Euler and Bessel	Ch-5.7	
	Laplace Transform	Ch-6.1;	
8	Derivatives and Inverses	Ch-6.2;	
	Translations	Ch- $6.3 \sim 6.4;$	
	Impulse functions and Convolution	Ch- $6.5 \sim 6.6;$	
9	Green's functions (optional)	Lecture slides only;	
	Midterm Exam II		
10	Vector Space	Lecture slides only;	
10	Eigenvalues and Eigenvectors	Ch-7.3;	
11	System of Differential equations	Ch-7.4 \sim 7.5;	
	Complex System	$\mathrm{Ch-7.6}\sim7.7;$	
	Phase planes	Ch-9.1;	
12	Inner product space	Lecture slides only;	
	Fourier series	$\mathrm{Ch-10.2}\sim10.4$	
13	Boundary value Problems	Ch-10.1	
	Separation of variables	Ch-10.5	
	Fourier transform (optional)	Lecture sides only	
14	Final Exam		

1.1.3 Matlab

- Students are strongly encouraged to get acquainted with a computer algebra system and use it to experiment with the topics discussed in the class. Free software for both symbolic and numerical calculations (e.g. Maxima, Octave) are available, along with commercial tools such as Matlab.
- What is Matlab?

It is a software used by millions of engineers and scientists.

• What does it do?

It is designed to help you solve equations and manipulate expressions with minimal programming. It is particularly good at doing matrix operations.

• How to get Matlab

Matlab is installed on all computers in the JI Computer Lab.

You can also install Matlab on your own computer.

- 1. Register your name at MathWorks using your sjtu email
- 2. Download
- 3. Activate Detailed instructions can be found at JI's IT-page.

1.1.4 Honour Code

- Honesty and trust are important. Students are responsible for familiarising themselves with what is considered as a violation of honour code.
- Assignments/projects are to be solved by each student individually. You are encouraged to discuss problems with other students, but you are advised not to show your written work to others. Copying someone else's work is a very serious violation of the honour code.
- Students may read resources on the Internet, such as articles on Wikipedia, Wolfram MathWorld or any other forums, but you are not allowed to post the original assignment question online and ask for answers. It is regarded as a violation of the honour code.
- Since it is impossible to list all conceivable instance of honour code violations, the students has the responsibility to always act in a professional manner and to seek clarification from appropriate sources if their or another students conduct is suspected to be in conflict with the intended spirit of the honour code.