活动详情

细胞膜两侧干细胞表型的调控

日期:2021/07/16 - 2021/07/16

学术讲座:细胞膜两侧干细胞表型的调控

主讲人:Rhima Coleman, Associate Professor, The University of Michigan

:2021年7月16日(周五)上午10:00-11:30

地点:CIMC Auditorium (Room 300), JI Long Bin Building (ZOOM Meeting ID: 959 3746 8448,

Passcode: 042711)

讲座摘要

While tissue engineering with adult mesenchymal stem cells (MSCs) offer exciting alternative therapies for repairing traumatic cartilage injury, many challenges remain with respect to engineering a functional replacement, due, in part, to our incomplete understanding of microenvironmental influences on stem cell fate and chondrocyte maturation. I will present a pre-chondrogenic stem cell niche developed in my lab in which we systematically investigate the combinatorial effects of multiple exogenous cues on early chondrogenesis and long-term phenotype in a high-throughput format. To regulate cell phenotype from the inside of the cell, we have designed a gene circuit that silence the activity of transcription factors known to drive chondrocyte maturation towards the bone formation pathway. In these ways, we aim to improve chondrogenesis and phenotypic stability of adult MSCs and ultimately their success in generating functional cartilage tissue.

主讲人简介

Dr. Rhima Coleman received her Bachelor’s degree in Mechanical Engineering from the University of Rochester. She then received a Master’s in Mechanical Engineering and a PhD in Bioengineering from Georgia Institute of Technology. Her research focus was tissue engineering of cartilage to prevent growth discrepancies in children. Dr. Coleman then moved to Hospital for Special Surgery in New York City to investigate the impact of cartilage ECM composition on mineral formation for her postdoctoral work. Finally, Dr. Coleman joined the faculty of Biomedical Engineering at the University of Michigan in 2012 to form the Cartilage Healing and Regeneration Laboratory, where she is investigating adult stem cell-based cartilage regeneration in complex multi-tissue environments, using a precision medicine approach that ranges from reprogramming intracellular signaling up to modeling whole joint mechanics to understand and modify these systems at their respective length scales.